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The linear and quadratic response functions have been derived for an exact state, based on an exponential
parametrization of the time evolution consisting of products of exponentials for orbital rotations and for
higher-order excitations. Truncating the linear response function such that the response function itself and its
pole structure is correct to second order in Møller-Plesset perturbation theory, we arrive at the second-order
polarization propagator approximation (SOPPA). Previous derivations of SOPPA have used the superoperator
formalism, making the extension of SOPPA to quadratic and higher order response functions difficult. The
derivation of the quadratic response function is described in detail, allowing molecular properties such as
hyperpolarizabilities, two-photon cross sections, and excited-state properties to be calculated using the SOPPA
model.

I. Introduction

Hyperpolarizabilities are important for the interpretation and
analysis of experiments in such different areas as nonlinear
optics,1,2 scattering theory,3 and the theory of intermolecular
interactions.4 The accurate prediction of hyperpolarizabilities
is also essential to progress in technologically important areas
such as the design of optical materials. However, theoretical
predictions are difficult to make, depending critically on the
description of electron correlation. The history of the determi-
nation of the static hyperpolarizability of the neon atom, which
we have recently reviewed,5 is perhaps the best illustration of
the difficulties that may arise in theoretical and experimental
determinations of hyperpolarizabilities.

The simplest model of electron correlation is provided by
second-order Møller-Plesset perturbation theory (MP2), which
typically recovers more than 90% of the correlation energy.6

Static molecular properties, in particular molecular equilibrium
structures and other properties that depend on the total energy,
have been successfully calculated using this model. By contrast,
the MP2 calculation of frequency-dependent molecular proper-
ties has been much less successful. To understand the reason
for this failure, we note that the MP2 model represents a two-
step approach, where a Hartree-Fock calculation is carried out
prior to the evaluation of the perturbation correction. Since the
response functions arising from this strategy retain the pole
structure of time-dependent Hartree-Fock (TDHF) theory, the
description of the dispersion of frequency-dependent molecular
properties is not improved relative to an uncorrelated descrip-
tion.7

To correlate the response function while retaining the pole
structure uncorrelated is clearly not a sound approach to the

calculation of frequency-dependent molecular properties. To
achieve the same accuracy as for static properties, we must also
modify the pole structure, as done in the second-order polariza-
tion propagator approach (SOPPA).8,9 In SOPPA, the linear
response function is set up as an extension to the TDHF theory,
with both the response function and its pole structure correct
to second order in perturbation theory.

So far, SOPPA has only been derived for linear response
functions and has therefore only been used to calculate second-
order molecular properties such as the frequency-dependent
polarizability. In particular, the SOPPA linear response function
has been obtained by expressing the response function of the
exact state within the superoperator inner-projection formalism,10

truncating the response function such that the response function
and the poles are both correct to second order in perturbation
theory. Since the quadratic and higher-order response functions
so far have not been expressed in the superoperator formalism,
SOPPA has not been extended to nonlinear response functions,
thereby restricting its use to linear properties.

In this paper, we demonstrate how SOPPA also may be
derived from time-dependent perturbation theory by parametriz-
ing the time evolution of the exact state in terms of exponential
operators for orbital rotations and for higher-order excitations.
Truncation of the exact linear response function in such a
manner that the response function and its pole structure are both
correct to second order in Møller-Plesset perturbation theory
then gives SOPPA. This approach may straightforwardly be
extended to quadratic and higher-order response functions. The
derivation of the quadratic response function and its residues is
described, making it possible to calculate properties such as
frequency-dependent hyperpolarizability, two-photon transition
matrix elements,11 and excited-state properties11 within the
SOPPA framework.† Part of the special issue “Jack Simons Festschrift”.
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Response functions have previously been derived for self-
consistent field (SCF) and a multiconfigurational SCF (MCSCF)
states.11 More recently, they have also been determined for a
coupled-cluster state.12 Truncating the cluster operator at the
singles and doubles level, we obtain the coupled-cluster singles-
and-doubles (CCSD) response functions. Further truncation of
the double amplitudes equations to lowest order in Møller-
Plesset perturbation theory gives the CC2 response functions.13

Indeed, CC2 theory may be viewed as an alternative to SOPPA,
where the response functions and their poles are determined to
second order in perturbation theory. However, a difference
between the SOPPA and CC2 models is that when the doubles
are neglected, SOPPA reduces to the response function for SCF
wave functions, whereas CC2 reduces to coupled-cluster singles
(CCS) theory. This difference originates from the explicit
inclusion of de excitation operators in the SOPPA approach.

II. Response Theory for a State Determined by
Perturbation Theory

A. Parametrization of the Unperturbed Reference State.
We consider a closed-shell molecular system described by a
time-independent HamiltonianH0, which we separate into a
zero-order HamiltonianF (the Fock operator) and a perturbation
operatorW (the fluctuation potential):

Next, we turn on adiabatically a Hermitian perturbation

where the positive infinitesimalε ensures thatV(-∞) is zero.
From the Hermiticity ofV(t), it follows that

At t ) -∞, the system is in the state

where theτi
† are column vectors containing all single, double,

and higher excitation operators, respectively, from the Hartree-
Fock state|HF〉:

whereas theci are row vectors containing the expansion
coefficients of these states. We here use indexesI, J, K, L for
occupied Hartree-Fock spin-orbitals andA, B, C, D for
unoccupied spin-orbitals, whileP, Q, R, Sare used for general
(unspecified) spin-orbitals. The states|xi〉 are defined as

With the operators defined as in eq 5, parts a and b, these states
constitute an orthonormal set

(here τxi
† denotes elementx of τi

†), so that the normalization
constant becomes

The expansion coefficientsci may be determined from Møller-
Plesset perturbation theory by solving the equations

to different orders in the fluctuation potential, whereΛ(0)† refers
to the state excitation operators collected in a column vector:

Note that the normalization constantN may be removed from
eq 9. We will in the following use the form without the
normalization factor which leads to the same equations as
obtained using standard intermediate normalization. Thus,
expanding the coefficientsci in powers of the fluctuation
potential

and inserting eq 4 into eq 9, we obtain to second order the
following set of equations

Equation 12a shows that

From eq 12b, we see that only doubly excited states|x2〉 )
τ2

†|HF〉 give nonzero first-order contributions toc2
(1) and that

these contributions are identical to those obtained in a conven-
tional derivation. Similarly, eq 12c shows thatci

(2) with i ) 1,
2, 3, 4 give nonzero second-order contributions.

B. Parametrization of the Time Development of the
Reference State.The time development of the reference state
is parametrized in terms of exponential operators for orbital
rotations and higher excitations working on the unperturbed
reference state:

Here the Hermitian operatorκ(t) generates a unitary transforma-
tion of the orbitals and contains a set of time-dependent orbital
amplitudes

H0 ) F + W (1)

V(t) ) ∫-∞

∞
dω V(ω) exp(-iω + ε)t (2)

V(ω)† ) V(-ω) (3)

|0〉 ) N(1 + c1τ1
† + c2τ2

† + ‚‚‚)|HF〉

) N(1 + c1|x1〉〈HF| + c2|x2〉〈HF| + ‚‚‚)|HF〉 (4)

τ1
† ) (aA

†aI) (5a)

τ2
† ) (aA

†aIaB
†aJ), (AI) g (BJ) (5b)

|xi〉 ) τi
†|HF〉, i ) 1, 2,... (6)

〈HF|τxi τyj
† |HF〉 ) δxyδij (7)

N ) ( 1 + ∑
i

cici
†)-1/2

(8)

〈0|[Λ(0)†, H0]|0〉 ) 〈0|[Λ(0)†, F + W]|0〉 ) 0 (9)

Λ(0)† ) (|x1〉〈HF|
|x2〉〈HF|

l ) (10)

ci ) ci
(0) + ci

(1) + ci
(2) + ‚‚‚ (11)

〈HF|[Λ(0)†, F] HF〉 ) 0 (12a)

∑
i

[(ci
(1))†〈xi|[Λ(0)†, F]|HF〉 + ci

(1)〈HF|[Λ(0)†, F]|xi〉] +

〈HF|[Λ(0)†, W]|HF〉 ) 0 (12b)

∑
i

[(ci
(2))†〈xi|[Λ(0)†, F]|HF〉 + ci

(2)〈HF|[Λ(0)†, F]|xi〉] +

∑
i

[(ci
(1))†〈xi|[Λ(1)†, W]|HF〉 + ci

(1)〈HF|[Λ(1)†, W]|xi〉] +

∑
i, j

(ci
(1))†cj

(1)〈xi|[Λ(0)†, W]|xj〉 ) 0 (12c)

ci
(0) ) 0 (13)

|0̃(t)〉 ) exp(iκ(t)) exp(iS(t))|0〉 (14)

κ(t) ) ∑
AI

[κAI(t)aA
†aI + κIA

/ (t)aI
†aA] )

∑
µ

[κµ(t)Qµ
† + κµ

/(t)Qµ] (15)
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Likewise, the Hermitian operatorS(t) generates a unitary
transformation in the configuration space and contains a set of
time-dependent configuration amplitudes:

where the summation is over all statesx except the single-excited
states contained inx1.

The time dependence of the orbital and configuration
parametersκai(t) andSx(t) is introduced in order to describe the
time evolution of the exact state in the presence of the
perturbation operatorV(t) in eq 2. Compared to the standard
parametrization of the time evolution of an exact state previously
used in ref 11, eq 4 includes orbital rotations instead of state
excitations between|HF〉 and single-excited determinants.The
replacement of single excitations with orbital rotations is is also
used in Bru¨ckner coupled cluster theory.14 We here use it in a
slightly different way: instead of using orbital rotations to
eliminate the single excitations from the wave function, we use
the orbital rotations to eliminate the time dependence of the
single excitations. As will be discussed later, the present use of
κ and S without single excitations has the advantage thatS
vanishes in the absence of the fluctuation potential. Another
difference between the present and previous forms ofS is the
present use of state-transfer operators|HF〉〈x|,| x〉〈HF| working
on the state|0〉 whereas the previous approach used state-transfer
operators of the form|0〉〈N|,|N〉〈0| where|N〉 is an basis for the
orthogonal complement to|0〉. The two forms of the state-
transfer operators spans the same space except for a phase-factor.
The present form will ease the perturbation expansion ofS as
it is expressed directly in terms of the Hartree-Fock determinant
and double and higher excitations. We note that, for a complete
description of the time development of the reference state, a
phase factor should be included in eq 14. However, since we
consider the determination of response functions and not the
wave function as such, this phase factor can be ignored.11

C. The Linear and Quadratic Response Functions.To
determine the linear and quadratic response functions, we begin
by considering the time dependence of the expectation value
〈0̃|A|0̃〉 of a one-electron operatorA, noting that, for our
purposes, we need only expand the wave function|0̃〉 of eq 14
to second order in the external perturbation:

We have here used thatκ(0) and S(0) vanish, as will be
demonstrated later. Substitution of these expansions into eq 14
yields to second order

Since the response functions are defined in the frequency rather
than the time domain, we now introduce wave function
corrections in the frequency space. By analogy with eq 2, we
write

where we require the second-order corrections to be symmetric
in the frequencies:

Inserting the frequency-expansions of the wave function cor-
rections of eq 19 into eq 18, we obtain

Comparing eq 21 with the formal expansion of an expectation
value in terms of response functions

we may identify the linear response function

and the quadratic response function

whereP12 averages over the two permutations of the frequencies
ω1 andω2:

S(t) ) ∑
x∉x1

[Sx(t)|x〉〈HF| + Sx
/(t)|HF〉〈x|] )

∑
x∉x1

[Sx(t)Qx
† + Sx

/(t)Qx] (16)

κ ) κ
(1)(t) + κ

(2)(t) + ‚‚‚ (17a)

S) S(1)(t) + S(2)(t) + ‚‚‚ (17b)

〈0̃|A|0̃〉 ) 〈0|A|0〉 - i〈0|[κ(1)(t) + S(1)(t), A]|0〉 - 1
2
〈0|[κ(1)(t),

[κ(1)(t), A]] |0〉 - 1
2
〈0|[S(1)(t),[S(1)(t), A]] |0〉 - 〈0|[S(1)(t),

[κ(1)(t), A]] |0〉 - i〈0|[κ(2)(t) + S(2)(t), A]|0〉 (18)

κ
(1)(t) ) ∫-∞

∞
dω κ

(1)(ω) exp(-iω + ε)t (19a)

κ
(2)(t) )

∫-∞

∞ ∫-∞

∞
dω1 dω2κ

(2)(ω1,ω2) exp(-i(ω1 + ω2) + 2ε)t

(19b)

S(1)(t) ) ∫-∞

∞
dω S(1)(ω) exp(-iω + ε)t (19c)

S(2)(t) )

∫-∞

∞ ∫-∞

∞
dω1 dω2 S(2)(ω1,ω2) exp(-i(ω1 + ω2) + 2ε)t (19d)

κ
(2)(ω1,ω2) ) κ

(2)(ω2,ω1) (20a)

S(2)(ω1,ω2) ) S(2)(ω2,ω1) (20b)

〈0̃|A|0̃〉 ) 〈0|A|0〉

- i∫-∞

∞ ∫-∞

∞
dω 〈0|[κ(1)(ω) + S(1)(ω), A]|0〉exp(-iω + ε)t

- 1
2∫-∞

∞ ∫-∞

∞
dω1 dω2 〈0|[κ(1)(ω1),[κ

(1)(ω2), A]] |0〉

exp(-i(ω1 + ω2) + 2ε)t - 1
2∫-∞

∞ ∫-∞

∞
dω1 dω2 〈0|[S(1)(ω1),

[S(1)(ω2), A]] |0〉exp(-i(ω1 + ω2) + 2ε)t -∫-∞

∞ ∫-∞

∞
dω1 dω2

〈0|[S(1)(ω1),[κ
(1)(ω2), A]] |0〉exp(-i(ω1 + ω2) + 2ε)t -

i∫-∞

∞ ∫-∞

∞
dω1 dω2 〈0|[κ(2)(ω1,ω2) + S(2)(ω1,ω2), A]|0〉

exp(-i(ω1 + ω2) + 2ε)t (21)

〈0̃|A|0̃〉 ) 〈0|A|0〉 ∫-∞

∞
dω 〈〈A;V(ω)〉〉ωexp(-iω + ε)t +

1
2∫∫-∞

∞
dω1 dω2 〈〈A;V(ω1), V(ω2)〉〉ω1,ω2

exp(-i(ω1 + ω2) + 2ε)t (22)

〈〈A;V(ω)〉〉ω ) -i〈0|[(κ(1)(ω) + S(1)(ω), A]|0〉 (23)

〈〈A;V(ω1), V(ω2)〉〉ω1,ω2
)

-P12〈0|[κ(1)(ω1),[κ
(1)(ω2), A]] |0〉 - P12〈0|[S(1)(ω1),

[S(1)(ω2), A]] |0〉 - 2P12〈0|[S(1)(ω1),[κ
(1)(ω2), A]] |0〉 -

2i〈0|[κ(2)(ω1,ω2) + S(2)(ω1,ω2), A]|0〉 (24)

P12〈0|[S(1)(ω1),[κ
(1)(ω2), A]] |0〉 ) 1

2
〈0|[S(1)(ω1),

[κ(1)(ω2), r]] |0〉 + 1
2

〈0|[S(1)(ω2),[κ
(1)(ω1), A]] |0〉 (25)
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In eq 24, we have thus explicitly ensured symmetry between
index 1 and 2 in accordance with the required permutation
symmetry of the quadratic response function

We have thus identified the terms of the order expansions in
the external perturbation ofSandκ that are needed for the linear
and quadratic response functions. In the next section, we
consider what terms to include in the expansions of the time-
independent and time-dependent wave functions to obtain the
response functions (including their pole structures) correctly to
second order in the fluctuation potential.

III. Form and Solution of the Time-Dependent Equations

A. Equations for the Time Development of the Reference
State.The time development of|0̃(t)〉 is determined by requiring
Ehrenfest’s theorem to be fulfilled for the operators in eqs 15
and 16, which describe the time evolution of|0̃(t)〉. It is
convenient to collect these operators in a vector (here in row
form):

whereQµ
† are the single orbital-excitation operators andQx

† the
double and higher state excitation operators. In the presence of
the time-dependent perturbation, we introduce the transformed
operator basis

where

and similarly forQ̃x, Q̃µ
†, andQ̃x

†. Use of the transformed basis
in eq 29 corresponds to the use of orbitals at timet:

The time evolution of|0̃(t)〉 may now be determined using
Ehrenfest’s theorem for the transformed operators ofΛ̃† in eq
28:

and similarly for their adjoints. The term〈0|[Qµ, H0]|0〉 in
Ehrenfest’s theorem forQ̃µ has been introduced to ensure that
κai(t) vanishes in the absence of the time-dependent perturbation,
in agreement with the absence of a zero-order term in the
expansion ofκ in eq 17. We likewise note that theSx(t)
parameters vanish in the absence of the perturbation as eq 31b
for the state-transfer operators enteringS(t) reduces to eq 9 in
the absence of an time-dependent perturbation.

B. Expansion of the Time-Dependent Equations in the
External Perturbation. We now expand eq 31 in orders of
the external perturbation, restricting ourselves to terms that are
linear and quadratic in the amplitudes. Inserting eq 17 into eq
31 and collecting the terms linear in the perturbation, we obtain
the first-order time-dependent equations

Next, collecting second-order terms, we obtain the second-order
time-dependent equations

To obtain eq 33, we used the Jacobi identity6

to rewrite

The first- and second-order equations have identical forms for
the orbital and state operatorsQµ andQx. By construction, the
zero-order equations are trivially satisfied, withκ ) S ) 0
corresponding to|0̃〉 ) |0〉.

C. The First-Order Equations. To solve the time-dependent
equations eqs 32 and 33, we use the frequency expansions of
the wave function corrections of eq 19 and of the external
perturbation eq 2. For the first-order equations, we obtain from
eq 32

which gives the first-order response equations

The terms involving the zero-order Hamiltonian may be written
in terms of the matrix

〈〈A;V(ω1), V(ω2)〉〉ω1,ω2
) 〈〈A;V(ω3), V(ω1)〉〉ω2,ω1

(26)

Λ ) (τ1
†, |x2〉〈HF|, |x3〉〈HF|, ...,τ1, |HF〉〈x2|, |HF〉〈x3| ...)

) (Qµ
†, Qx

†, Qµ, Qx) (27)

Λ̃† ) (Q̃µ

Q̃x

Q̃µ
†

Q̃x
†
) (28)

Q̃µ ) exp(iκ(t))Qµexp(-iκ(t)) (29)

ãP
†(t) ) exp(iκ(t))aP

†exp(-iκ(t)) (30)

d
dt

〈0̃(t)| Q̃µ| 0̃(t)〉 - 〈0̃(t)|( ∂∂t
Q̃µ)| 0̃(t)〉 ) -i(〈0̃(t)|[Q̃µ, H0 +

V(t)]| 0̃(t)〉 - 〈0|[Qµ, H0]|0〉) (31a)

d
dt

〈0̃(t)|Q̃x| 0̃(t)〉 - 〈0̃(t)|( ∂∂t
Q̃x)|0̃(t)〉 ) -i〈0̃(t)|[Q̃x, H0 +

V(t)]|0̃(t)〉 (31b)

i〈0|[Λ†, Ṡ(1) + κ̆
(1)]|0〉 ) -i〈0|[Λ†, V(t)]|0〉 +

〈0|[[Λ†, H0], S(1)]|0〉 + 〈0|[Λ†,[H0,κ
(1)]] |0〉 (32)

i〈0|[Λ†, Ṡ(2) + κ̆
(2)]|0〉 - 1

2
〈0|[[Λ†, Ṡ(1)], S(1)]|0〉

- 1
2

〈0|[[Λ†, S(1)], Ṡ(1)]|0〉 - 1
2

〈0|[Λ†,[κ̆(1),κ(1)]] |0〉

- 〈0|[[Λ†, κ̆
(1)], S(1)]|0〉 ) 〈0|[[Λ†, H0], S(2)]|0〉

+ 〈0|[Λ†,[H0,κ
(2)]] |0〉 + 〈0|[[Λ†, V(t)], S(1)]|0〉

+ i
2

〈0|[[[ Λ†, H0], S(1)], S(1)]|0〉 + 〈0|[Λ†,[V(t),κ(1)]] |0〉

+ i〈0|[[Λ†,[H0,κ
(1)]], S(1)]|0〉 + i

2
〈0|[Λ†,[[H0,κ1],κ1]] |0〉

(33)

[A,[B, C]] + [B,[C, A]] + [C,[A, B]] ) 0 (34)

- 1
2

〈0|[[Λ†, κ
(1)],κ̆(1)]|0〉 + 1

2
〈0|[[Λ†,κ(1)], κ̆

(1)]|0〉 )

- 1
2

〈0|[Λ†,[κ̆(1),κ(1)]] |0〉 (35)

∫-∞

∞
dω exp(-iω + ε)t(ω〈0|[Λ†, S(1)(ω) + κ

(1)(ω)]|0〉

- 〈0|[[Λ†, H0], S(1)(ω)]|0〉 - 〈0|[Λ†,[H0,κ
(1)(ω)]] |0〉|) )

∫-∞

∞
dω exp(-iω + ε)t(-i〈0|[Λ†, V(ω)]|0〉) (36)

ω〈0|[Λ†, S(1)(ω) + κ
(1)(ω)]|0〉 - 〈0|[[Λ†, H0], S(1)(ω)]|0〉 -

〈0|[Λ†,[H0,κ
(1)(ω)]] |0〉) ) -i〈0|[Λ†, V(ω)]|0〉 (37)
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The diagonal blocks〈0|[Qµ,[H0, Qν
†]] |0〉 and〈0|[Qµ

†,[H0, Qν]] |0〉 in eq 38 are not symmetric when|0〉 is defined by means of a finite
perturbation expansion. To see this, we use the Jacobi identity eq 34 to evaluate the difference between a matrix element and its
transposed element:

The reference state|0〉 is determined by solving〈0|[Λ(0)†, H0]|0〉 ) 0 to a given order in the fluctuation potential; see eq 12. Thus,
if |0〉 is obtained to ordern, the matrix elements〈0|[H0,[Qµ, Qν

†]] |0〉 is of ordern + 1. Since we here need|0〉 only to second order,
we can replace the asymmetric form ofE[2] in eq 38 by the following symmetric form by introducing third-order changes

where [A, B, C] is the symmetric double commutator

The remaining diagonal blocks ofE[2], 〈0|[[Qx, H0], Qy
†]|0〉 and 0|[[Qx

†, H0], Qy]|0〉, do not need to be symmetrized, as shown later.
To represent the remaining parts of the first-order equations eq 37 in matrix form, we introduce the symmetric metric matrix

and the vectors

We can now write the first-order response equations eq 37 in the form

We shall discuss the expansion of the matricesS[2], E[2], andV[1](ω) in orders of the fluctuation potential later.
D. The Second-Order Equations.Inserting the frequency expansions of the first- and second-order wave function corrections

from eq 19 into eq 33 and using the definitions ofE[2] andS[2] from eqs 40 and 42, we obtain

To express the second-order equations more compactly, we introduce the three-index supermatricesS[3] and E[3], operationally
defined in the following manner

E[2] ) (〈0|[Qµ,[H0, Qν
†]] |0〉 〈0|[[Qµ, H0], Qy

†]|0〉 〈0|[Qµ,[H0, Qν]] |0〉 〈0|[[Qµ, H0], Qy]|0〉
〈0|[Qx,[H0, Qν

†]] |0〉 〈0|[[Qx, H0], Qy
†]|0〉 〈0|[Qx,[H0, Qν]] |0〉 〈0|[[Qx, H0], Qy]|0〉

〈0|[Qµ
†,[H0, Qν

†]] |0〉 〈0|[[Qµ
†, H0], Qy

†]|0〉 〈0|[Qµ
†,[H0, Qν]] |0〉 〈0|[[Qµ

†, H0], Qy]|0〉
〈0|[Qx

†,[H0, Qν
†]] |0〉 〈0|[[Qx

†, H0], Qy
†]|0〉 〈0|[Qx

†,[H0, Qν]] |0〉 〈0|[[Qx
†, H0], Qy]|0〉

) (38)

〈0|[Qµ,[H0, Qν
†]] |0〉 - 〈0|[Qν,[H0, Qµ

†]] |0〉 ) 〈0|[H0,[Qµ, Qν
†]] |0〉 (39)

E[2] ) (〈0|[Qµ, H0, Qν
†]|0〉 〈0|[[Qµ, H0], Qy

†]|0〉 〈0|[Qµ,[H0, Qν]] |0〉 〈0|[[Qµ, H0], Qy]|0〉
〈0|[Qx,[H0, Qν

†]] |0〉 〈0|[[Qx, H0], Qy
†]|0〉 〈0|[Qx,[H0, Qν]] |0〉 〈0|[[Qx, H0], Qy]|0〉

〈0|[Qµ
†,[H0, Qν

†]] |0〉 〈0|[[Qµ
†, H0], Qy

†]|0〉 〈0|[Qµ
†, H0, Qν]|0〉 〈0|[[Qµ

†, H0], Qy]|0〉
〈0|[Qx

†,[H0, Qν
†]] |0〉 〈0|[[Qx

†, H0], Qy
†]|0〉 〈0|[Qx

†,[H0, Qν]] |0〉 〈0|[[Qx
†, H0], Qy]|0〉

) (40)

[A, B, C] ) 1
2

([[A, B], C] + [A,[B, C]]) (41)

S[2] ) (〈0|[Qµ, Qν
†]|0〉 〈0|[Qµ, Qy

†]|0〉 〈0|[Qµ, Qν]|0〉 〈0|[Qµ, Qy]|0〉
〈0|[Qx, Qν

†]|0〉 〈0|[Qx, Qν
†]|0〉 〈0|[Qx, Qν]|0〉 〈0|[Qx, Qy]|0〉

〈0|[Qµ
†, Qν

†]|0〉 〈0|[Qµ
†, Qy

†]|0〉 〈0|[Qµ
†, Qν]|0〉 〈0|[Qµ

†, Qy]|0〉
〈0|[Qx

†, Qν
†]|0〉 〈0|[Qx

†, Qy
†]|0〉 〈0|[Qx

†, Qν]|0〉 〈0|[Qx
†, Qy]|0〉

) (42)

V[1](ω) ) (〈0|[Qµ, V(ω)]|0〉
〈0|[Qx, V(ω)]|0〉
〈0|[Qµ

†, V(ω)]|0〉
〈0|[Qx

†, V(ω)]|0〉 ), R(i) ) (κ(i)

Sx
(i)

κ
(i)*

Sx
(i)*

) (43)

(E[2] - ωS[2])R(1) ) iV[1](ω) (44)

(ω1 + ω2) (S[2] - E[2]) R(2)(ω1,ω2) ) P12[- i
2
ω1(〈0|[[Λ†, S(1)(ω1)], S(1)(ω2)]|0〉 + 〈0|[[Λ†, S(1)(ω2)], S(1)(ω1)]|0〉) - i

2
ω1〈0|[Λ†,

[κ(1)(ω1),κ
(1)(ω2)]] |0〉 - iω1〈0|[[Λ†,κ(1)(ω1)], S(1)(ω2)]|0〉 + 〈0|[[Λ†, V(ω1)], S(1)(ω2)]|0〉 + i

2
〈0|[[[ Λ†, H0], S(1)(ω1)],

S(1)(ω2)]|0〉 + 〈0|[Λ†,[V(ω1),κ
(1)(ω2)]] |0〉 + i〈0|[[Λ†,[H0,κ

(1)(ω1)]], S(1)(ω2)]|0〉 + i
2

〈0|[Λ†,[[H0,κ
(1)(ω1)],κ

(1)(ω2)]] | 0〉] (45)

11622 J. Phys. Chem. A, Vol. 109, No. 50, 2005 Olsen et al.



We furthermore introduceVω[2], obtained fromE[2] in eq 40 by replacingH0 with Vω. The second-order equations can now be
written as

The contractions of vectors withE[3] andS[3] is discussed in greater detail later.

IV. Response Functions and Their Residues

A. The Linear and Quadratic Response Functions.The linear response function is obtained by inserting the first-order correction
as obtained in eq 44 in the expression for the linear response function eq 23. Renaming the perturbation operatorV(ω) to B and
introducing

we obtain

The linear response function may thus be calculated by solving one set of linear equations at each frequency.11

The quadratic response function is likewise obtained by inserting the first- and second-order corrections eqs 44 and 48 into the
expression for the quadratic response function eq 24. We next renameV(ω1) and V(ω2) to B and C, respectively, introduce the
vectorC[1] by analogy withB[1] of eq 49b, and finally generateB[2] andC[2] from the original definition ofE[2] in eq 38 by replacing
H0 with B andC, respectively. Introducing the matrix

we find that the quadratic response function may be written in the form

For a given pair of frequenciesω1 andω2, the quadratic response function may thus be evaluated by solving three sets of first-order
equations:

∑
jk

Sijk
[3] Rj

(1) Rk
(2) )

1

2 (〈0|[[Λi
†,∑

x

(Sx
(1) Qx

† + Sx
(1)*Qx)], ∑

y

(Sy
(2) Qy

† + Sy
(2)*Qy)]|0〉 +

1

2
〈0|[[Λi

†,∑
x

(Sx
(2) Qx

† + Sx
(2)*Qx)], ∑

y

(Sy
(1) Qy

† + Sy
(1)*Qy)]|0〉) +

1

2
〈0|[Λi

†,[∑
µ

(κµ
(1) Qµ

† + κ
(1)*Qµ), ∑

ν

(κν
(2) Qν

† + κ
(2)*Qν)]] |0〉 + 〈0|[[Λi

†, ∑
µ

(κµ
(1) Qµ

† + κ
(1)*Qµ)], ∑

y

(Sy
(2) Qy

† + Sy
(2)*Qy)]|0〉 (46)

∑
jk

Eijk
[3] Rj

(1) Rk
(2) )

1

2
〈0|[[[ Λi

†, H0], ∑
x

(Sx
(1) Qx

† + Sx
(1)*Qx)], ∑

y

(Sy
(2) Qy

† + Sy
(2)*Qy)]|0〉 + 〈0|[[Λi

†, [H0,∑
µ

(κµ
(1) Qµ

† + κ
(1)*Qµ)]], ∑

x

(Sx
(2) Qx

† +

Sx
(2)*Qx)]| 0〉 +

1

2
〈0|[Λi

†, [[H0, ∑
µ

(κµ
(1) Qµ

† + κ
(1)*Qµ)], ∑

ν

(κν
(2) Qν

† + κ
(2)*Qν)]] | 0〉 (47)

[(ω1 + ω2)S
[2] - E[2]] R(2)(ω1,ω2) ) -P12[(iω1S

[3] - iE[3]) R(1)(ω1) R(1)(ω2) - V[2](ω1) R(1)(ω2)] (48)

Aj
[1] ) -〈0|[Λj, A]|0〉 (49a)

Bj
[1] ) 〈0|[Λj

†, B]|0〉 (49b)

〈〈A;B〉〉ω ) -A[1](E[2] - ωS[2])-1B[1] (50)

A[2] ) - 1
2(〈0|[Qµ, [A, Qν

†]] |0〉 〈0|[[Qµ, A], Qy
†]|0〉 〈0|[Qµ, [A, Qν]] |0〉 〈0|[[Qµ, A], Qy]|0〉

〈0|[Qx, [A, Qν
†]] |0〉 〈0|[[Qx, A], Qy

†]|0〉 〈0|[Qx, [A, Qν]] |0〉 〈0|[[Qx, A], Qy]|0〉
〈0|[Qµ

†, [A, Qν
†]] |0〉 〈0|[[Qµ

†, A], Qy
†]|0〉 〈0|[Qµ

†, [A, Qν]] |0〉 〈0|[[Qµ
†, A], Qy]|0〉

〈0|[Qx
†, [A, Qν

†]] |0〉 〈0|[[Qx
†, A], Qy

†]|0〉 〈0|[Qx
†, [A, Qν]] |0〉 〈0|[[Qx

†, A], Qy]|0〉
) (51)

〈〈A;B, C〉〉ω1,ω2
) ∑

ijkl

Bi
[1](E[2] - ω1S

[2])ij
-1(Ajk

[2] + Akj
[2])(E[2] - ω1S

[2])kl
-1 Cl

[1] + ∑
ijkl

Ai
[1](E[2] - (ω1 + ω2)S

[2])ij
-1 Bjk

[2](E[2] -

ω2S
[2])kl

-1 Cl
[1] + ∑

ijkl

Ai
[1](E[2] - (ω1 + ω2)S

[2])ij
-1 Cjk

[2](E[2] - ω1S
[2])kl

-1 Bl
[1] - ∑

ijklmn

Ai
[1](E[2] - (ω1 + ω2)S

[2])ij
-1(Ejkl

[3] + Ejlk
[3] -

ω1Sjkl
[3] - ω2Sjlk

[3]) × (E[2] - ω1S
[2])km

-1 Bm
[1](E[2] - ω2S

[2])ln
-1 Cn

[1] (52)

Na(ω1 + ω2) ) (E[2] - (ω1 + ω2)S
[2])-1A[1]T (53a)

Nb(ω1) ) (E[2] - ω1S
[2])-1B[1] (53b)

Nc(ω2) ) (E[2] - ω2S
[2])-1C[1] (53c)
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which allow us to write the quadratic response function as

Note that only first-order equations are needed to calculate the
quadratic response function for a given set of given frequencies.
For variational wave functions such as SCF and MCSCF wave
functions, it has previously been established that the first-order
correction to the wave function is sufficient to determine the
quadratic response function.11

B. Excitation Energies and Residues of the Quadratic
Response Functions.The linear and quadratic response func-
tions obtained above have the same structure as those previously
obtained for SCF and MCSCF wave functions, differing only
in the detailed form of the various vectors and matrices. We
can thus straightforwardly take over the identifications of
residues previously made in SCF and MCSCF theories.11

However, before discussing these identification, we shall briefly
comment on the excitation energies obtained in the present
approach.

Motivated by the occurrence of the exact excitation energies
as the poles of the exact linear response function, the excitation
energies are in the present approach obtained as the poles of
the linear response function eq 50, by solving the symmetric
generalized eigenvalue problem

Because of the paired structure ofE[2] andS[2] in eqs 40 and
42, with the appearance of deexcitation as well as excitation
operators, the eigensolutions are also paired. Thus, if the vector

is an eigenvector for the generalized eigenvalue problem eq 55
with eigenvalueωi, then the paired structure ofE[2] and S[2]

ensures that the related vector

is an eigenvector of the generalized eigenvalue problem with
eigenvalue-ωi. This paired structure of the solutions of the
linear response function is well established and has been utilized
to set up an efficient iterative method for solving the eigenvalue
problem.15

Since the residues of the second-order linear response function
have already been analyzed in detail,16 we focus here on the
residues of the quadratic response function. As previously
discussed in SCF and MCSCF theories,11 the transition moment
of an operatorA between two excited statesf and g may be
obtained by solving first the linear response equations eq 55 to
generate the excitation energiesωf andωg and the eigenvectors

Xf andXg, followed by the solution of the linear equations

and the identification of the transition moment as

An important application of quadratic response theory is the
calculation of two-photon transition moments. Whereas the two-
photon transition moment was traditionally considered a property
connected with the cubic response function, it was shown in
ref 11 that it may also be extracted as a single residue from the
quadratic response function. The two-photon transition moment
between states 0 andf for the operatorsA andB at frequency
ω1 may be obtained by first solving eq 55 to obtainωf andXf,
followed by the solution of two sets of linear equations:

The two-photon transition matrix element is then obtained as

V. Determination of the Response Matrices

In the preceding discussion, we introduced a number of
matricessin particular,E[2] andS[2]. However, only their general
index structure was presented; their detailed form was not
examined. In this section, we discuss these matrices in detail,
analyzing which terms in the expansion of|0〉 are required for
the construction of the matrices. We begin by discussing what
operators inκ andSmust be included to calculate the response
functions to second order in the fluctuation potential. Next, we
derive the form of the various blocks of the matrices. This
information is then used in the following section to set up
algorithms for the direct contraction of response matrices with
one or several vectors.

A. Expansion of S in the Fluctuation Potential. In the
absence of the fluctuation potential, only a single determinant
is needed to describe the unperturbed and perturbed states soS
in eq 14 vanishes in this limit. TheS parameters are thus at
least of first order in the fluctuation potential, unlike theκ
parameters in eq 14, which contain zero-order terms. On the
other hand, no terms inS of second order in the fluctuation
potential are needed to calculate the expectation value of a one-
electron operator eq 18 to second order. This is easy to shows
remembering thatS by definition only contains double and
higher excitations. Consider, for example, the term in eq 18 of
the form 〈0|[S, A]|0〉. Any second-order term inS must
necessarily occur together with the zero-order term|HF〉 of the
wave function |0〉. However, terms such as〈HF|[S, A]|HF〉
vanish trivially sinceA gives zero matrix elements between the
Hartree-Fock and states higher than single excitations. The
same argument holds for the other terms that contain a single
S operator and one or severalκ operators. In the term that
contains twoS operators, only the terms inS that are linear in
the fluctuation potential give contributions that are at most

〈〈A;B, C〉〉ω1,ω2
) ∑

ij

Ni
b(ω1)(Aij

[2] + Aji
[2])Nj

c(ω2) +

∑
ij

Ni
a(ω1 + ω2)Bij

[2] Nj
c(ω2) + ∑

ij

Ni
a(ω1 + ω2)Cij

[2] Nj
b(ω1) -

∑
ijk

Ni
a(ω1 + ω2)(Eijk

[3] + Eikj
[3] - ω1Sijk

[3] - ω2Sikj
[3])Nj

b(ω1)Nk
c(ω2)

(54)

E[2]X i ) ωiS
[2]X i (55)

X ) (Zµ
Zx

Yµ
Yx

) (56)

XP ) (Yµ
Yx

Zµ
Zx

) (57)

Na(ωf - ωg) ) [E[2] - (ωf - ωg)S
[2]]-1A[1]T (58)

〈g|A|f〉 ) δfg〈0|A|0〉 - ∑
ij

Xig
P(Aij

[2] + Aji
[2])Xjf +

∑
ijk

Ni
a(ωf - ωg)(Eijk

[3] + Eikj
[3] + ωgSijk

[3] - ωfSikj
[3])Xjg

PXkf (59)

Na(ωf - ω1) ) (E[2] - (ωf - ω1)S
[2])-1A[1]T (60a)

Nb(-ω1) ) (E[2] + ω1S
[2])-1B[1] (60b)

Γ0ff
AB (ω1) ) - ∑

ij

Ni
a(ωf - ω1)Bij

[2]Xkf - ∑
ij

Ni
b(-ω1)(Aij

[2] +

Aji
[2])Xjf + ∑

ijk

(Eijk
[3] + Eikj

[3] + ω1Sijk
[3] - ωfSikj

[3])Ni
a(ωf - ω1)

Nj
b(-ω1)Xkf (61)

11624 J. Phys. Chem. A, Vol. 109, No. 50, 2005 Olsen et al.



quadratic in the fluctuation potential. In short, to determine the
linear, quadratic, and higher order response to an external
perturbation, it is only necessary to include terms inS that are
linear in the fluctuation potential.

Let us next consider what excitation ranks should be included
in S. Remember first that single excitations are excluded by
definition in S. Whereas the corrections to the Hartree-Fock
wave function from triple and higher excitations are of second
or higher orders in the fluctuation potential, this is not
necessarily true for the corrections due to the external perturba-
tion. However, a closer analysis reveals that only double
excitations are required to determine the response functions and
the pole structure correct to second order in the fluctuation
potential.8 We conclude that only double excitations should be
included inSand thatS is at least first order in the fluctuation
potential.

B. The Structure of S[2], E[2], and V[1](ω). We now discuss
the terms that should be included to obtain the excitation
energies and transition moments of single-excitation-dominated
excitations to second order in the fluctuation potential. Let us
consider the various blocks ofS[2] andE[2]. The blocks where
both indexes refer to orbital excitations must be obtained to
second order in the fluctuation potential. SinceS is of at least
first order in the fluctuation potential, the remaining blocks may
be calculated to lower orders. Thus, the blocks ofS[2] andE[2]

that couple orbital and state rotations need only to be obtained
to first order, whereas the blocks where both indexes refer to
transfer operators are needed to zero order.

Let us first considerS[2] as defined in eq 42. As this matrix
is manifestly symmetric, we need only consider the blocks on
or below the diagonal. In the〈0|[Qµ, Qν

†]|0〉 block, we notice
that [Qµ, Qν

†] is an operator of zero excitation rank,6 so only
terms of identical bra and ket excitation ranks give nonzero
contributions. We therefore have

As all excitation operators commute among themselves as do
all deexcitation operators, the remaining orbital blocks vanish:

The blocks that couple orbital operators with state operators
need only be obtained to first order in the fluctuation potential.
Since only double excitations contribute to first order, we find
that these coupling blocks vanish to first order:

Finally, the blocks that involve two state operators should only
be obtained to zero order. Whereas matrix elements between
two excitation operators or between two deexcitation operators
vanish, those that involve both excitations and deexcitations do
not vanish:

Let us next examine the blocks of the symmetric form of
E[2] of eq 40. The HamiltonianH0 is partitioned as in eq 1 into
the Fock operator of excitation ranks ) 0 and the fluctuation
potential with excitation ranks-2 e s e 2. Since [Qµ, F, Qν

†]
has rank zero and since [Qµ, W, Qν

†] contains terms with
excitation ranks-2 e s e 2, we obtain

For the block containing two orbital excitations〈0|[Qµ
†,[H0,

Qν
†]] |0〉, the contributions from the Fock operator vanishes as

[F, Qν
†] is an excitation operator and therefore commutes with

Qµ
†. As [Qµ

†,[W, Qν
†]] has terms with excitation ranks 0e s e 2,

we obtain

The mixed blocks, containing one orbital operator and one state
operator, should be calculated to first order in the fluctuation
potential. From rank considerations, we find

Finally, the blocks involving only state operators need only be
evaluated to zero order. Whereas the blocks containing only
excitation operators or only deexcitation operators vanish to zero
order, the remaining blocks are nonzero:

Clearly, these blocks are symmetric to the required order.

Turning our attention toV[1] in eq 43, we note that the
elements involving orbital operators should be calculated to
second order in the fluctuation potential, whereas those that
involve state operators should be calculated to first order. Since
V(ω) is a one-electron operator, the commutator [Qµ, V(ω)] has
contributions of excitation ranks-1 and 0. We therefore
obtain

〈0|[Qµ, Qν
†]|0〉 ) 〈HF|[Qµ, Qν

†]|HF〉(1 - c2
(1) c2

(1)†) +

c2
(1)†〈x2|[Qµ, Qν

†]|x2〉c2
(1) (62a)

〈0|[Qµ
†, Qν]|0〉 ) - 〈0|[Qν, Qµ

†]|0〉 (62b)

〈0|[Qµ, Qν]|0〉 ) 0 (63a)

〈0|[Qµ
†, Qν

†]|0〉 ) 0 (63b)

〈0|[Qµ, Qx
†]|0〉)〈0|Qµ|x〉〈HF|0〉-〈0|x〉〈HF|Qµ|0〉 ) 0 (64a)

〈0|[Qµ
†, Qx

†]|0〉)〈0|Qµ
†|x〉〈HF|0〉-〈0|x〉〈HF|Qµ

†|0〉 ) 0 (64b)

〈0|[Qµ
†, Qx]|0〉 ) - 〈0|[Qµ, Qx

†]|0〉* ) 0 (64c)

〈0|[Qµ, Qx]|0〉 ) - 〈0|[Qµ
†, Qx

†]|0〉 ) 0 (64d)

〈0|[Qx, Qy]|0〉 ) 〈0|[Qx
†, Qy

†]|0〉 ) 0 (65a)

〈0|[Qx, Qy
†]|0〉 ) - 〈0|[Qx

†, Qy]|0〉 ) δxy (65b)

〈0|[Qµ, H0, Qν
†]|0〉 ) 〈0|[Qµ, F, Qν

†]|0〉 +

〈0|[Qµ, W, Qν
†]|0〉 ) 〈HF|[Qµ, F, Qν

†]|HF〉(1 - c2
(1) c2

(1)†) +

〈HF|[Qµ, W, Qν
†]|HF〉 + c2

(1)†〈x2|[Qµ, F, Qν
†]|x2〉c2

(1) +

c2
(1)†〈x2|[Qµ, W, Qν

†]|HF〉 + 〈HF|[Qµ, W, Qν
†]|x2〉c2

(1) (66a)

〈0|[Qµ
†, H0, Qν]|0〉 ) 〈0|[Qµ, H0, Qν

†]|0〉* (66b)

〈0|[Qµ
†,[H0, Qν

†]] |0〉 ) 〈0|[Qµ
†,[W, Qν

†]] |0〉 )

〈HF|[Qµ
†,[W, Qν

†]] |HF〉 + c2
(1)†〈x2|[Qµ

†,[W, Qν
†]] |HF〉 (67a)

〈0|[Qµ,[H0, Qν]] |0〉 ) 〈0|[Qµ
†,[H0, Qν

†]] |0〉* (67b)

〈0|[[Qµ
†, H0], Qx

†]|0〉 ) 〈0|[[Qµ, H0], Qx]|0〉 ) 0 (68a)

〈0|[[Qµ, H0], Qx
†]|0〉 ) 〈HF|[Qµ, W]|x〉 (68b)

〈0|[[Qµ
†, H0], Qx]|0〉 ) 〈0|[[Qµ, H0], Qx

†]|0〉* (68c)

〈0|[[Qx, H0], Qy]|0〉 ) 〈0|[[Qx
†, H0], Qy

†]|0〉 ) 0 (69a)

〈0|[[Qx, H0], Qy
†]|0〉 ) 〈x|F|y〉 - δxy〈HF|F|HF〉 (69b)

〈0|[[Qx
†, H0], Qy]|0〉 ) 〈0|[[Qx, H0], Qy

†]|0〉* (69c)
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The elements involving state operators are given by

It is interesting to note that all above matrices are identical to
those obtained using the SOPPA superoperator algebra.8

C. The Structure of E[3], S[3], and V[2](ω). The three-index
quantitiesS[3] andE[3] both contain 43 ) 64 blocks. Since their
elements are obtained in the same manner as those ofS[2] and
E[2], we only give the final expressions here. In general, a matrix
element containingI state operators is only required to order 2
- I in the fluctuation potential. With this restriction, most of
the blocks ofS[3] andE[3] vanish. For the unique nonvanishing
blocks ofS[3], we obtain

Likewise, the unique nonvanishing blocks ofE[3] are given by

Finally, V[2](ω) has the following unique nonvanishing elements

VI. Computational Aspects

The indexes of the various matrices discussed in the preceding
sections have the dimension of twice the number of single and
double excitations. As the matrices contain two or three such
indexes, they cannot be explicitly constructed and stored.
Moreover, the matrices are not needed as such. When iterative
methods are used to solve the generalized eigenvalue problem
of eq 55 and linear equations such as eq 60b, only products of
E[2] andS[2] with vectors are required. Algorithms for the direct
generation of such products have previously been described.9

They not only eliminate the need for the explicit storage ofE[2]

and S[2], but they also have a lower scaling than the explicit
construction ofE[2] and S[2]. With these direct methods, the
evaluation of excitation energies and linear response functions
has the same scaling as the standard MP2 energy calculation.

Consider, for example, the contribution to that part of (E[2]X)µ
where the free indexµ refers to an orbital deexcitation from
the orbital part ofX. Using eq 40, we obtain

where inXorb, the elementsZx andYx in eq 56 are zero. From
the identifications in eqs 66a and 67a and from the Jacobi
identity eq 34, we obtain

To simplify the expression and, in particular to eliminate the
explicit reference to the fluctuation potential, a number of

〈0|[Qµ, V(ω)]|0〉 ) 〈HF|[Qµ, V(ω)]|HF〉(1 - c2
(1) c2

(1)†) +

c2
(1)†〈x2|[Qµ, V(ω)]|x2〉c2

(1) + 〈HF|[Qµ, V(ω)]|x1〉c1
(2) (70a)

〈0|[Qµ
†, V(ω)]|0〉 ) - 〈0|[Qµ, V(-ω)]|0〉* (70b)

〈0|[Qx, V(ω)]|0〉 ) 〈x|V(ω)|x2〉c2
(1) -

〈HF|V(ω)|HF〉cx2
(1) (71a)

〈0|[Qx
†, V(ω)]|0〉 ) - 〈0|[Qx, V(-ω)]|0〉* (71b)

〈0|[Qµ,[Qν
†, Qω]] |0〉 ) 〈HF|[Qµ,[Qν

†, Qω]] |x1〉c1
(2) (72a)

〈0|[[Qµ, Qν
†], Qx

†]|0〉 ) c2
(1)†〈x2|[Qµ, Qν

†]|x〉 - cx2
(1)〈HF|

[Qµ, Qν
†]|HF〉 (72b)

〈0|[Qµ,[[H0, Qν
†], Qω

† ]] |0〉 )

〈HF|[Qµ,[[W, Qν
†], Qω

† ]] |HF〉 (73a)

〈0|[Qµ,[[H0, Qν
†], Qω]] |0〉 ) 〈HF|[Qµ,[[F, Qν

†], Qω]] |x1〉c1
(2) +

〈HF|[Qµ,[[W, Qν
†], Qω]] |HF〉 +

〈HF|[Qµ,[[W, Qν
†], Qω]] |x2〉c2

(1) (73b)

〈0|[Qµ,[[H0, Qν], Qω
† ]] |0〉 ) 〈HF|[Qµ,[[F, Qν], Qω

† ]] |x1〉c1
(2) +

〈HF|[Qµ,[[W, Qν], Qω
† ]] |HF〉 +

〈HF|[Qµ,[[W, Qν], Qω
† ]] |x2〉c2

(1) (73c)

〈0|[Qµ,[[H0, Qν], Qω]] |0〉 )

〈HF|[Qµ,[[W, Qν], Qω]] |x2〉c2
(1) (73d)

〈0|[[Qµ,[H0, Qν
†]], Qx

†]|0〉 ) 〈HF|[Qµ,[W, Qν
†]] |x〉 +

c2
(1)†〈x2|[Qµ,[F, Qν

†]] |x〉 - cx2
(1)〈HF|[Qµ,[F, Qν

†]] |HF〉 (73e)

〈0|[[Qµ,[H0, Qν
†]], Qx]|0〉 ) 〈HF|[Qµ,[F, Qν

†]] |HF〉cx2
(1) -

〈x|[[Qµ,[F, Qν
†]] |x2〉c

(1) - 〈x|[Qµ,[W, Qν
†]] |HF〉 (73f)

〈0|[[Qµ,[H0, Qν]], Qx
†]|0〉 ) 〈HF|[Qµ,[W, Qν]] |x〉 (73g)

〈0|[[Qµ,[H0, Qν]], Qx]|0〉 ) - 〈x|[Qµ,[W, Qν]] |HF〉 (73h)

〈0|[[Qµ, V(ω)], Qν
†]|0〉 ) 〈HF|[[Qµ, V], Qν

†]|HF〉

(1 - c(1)c(1)†) + c2
(1)†〈x2|[[Qµ, V(ω)], Qν

†]|x2〉c2
(1) +

c1
(2)†〈x1|[[Qµ, V(ω)], Qν

†]|HF〉 (74a)

〈0|[[Qµ, V(ω)], Qν]|0〉 ) 〈HF|[[Qµ, V(ω)], Qν]|x1〉c1
(2) (74b)

〈0|[[Qµ, V(ω)], Qx
†]|0〉 )

c2
(1)†〈x2|[Qµ, V(ω)]|x〉 - cx2

(1)〈HF|[Qµ, V(ω)]|HF〉 (74c)

〈0|[[Qµ, V(ω)], Qx]|0〉 ) 〈HF|[Qµ, V(ω)]|HF〉cx2
(1) -

〈x|[Qµ, V(ω)]|x2〉c2
(1) (74d)

〈0|[[Qx, V(ω)], Qy
†]|0〉 )

〈x|V(ω)|y〉 - δxy〈HF|V(ω)|HF〉 (74e)

(E[2]Xorb)µ ) 〈0|[Qµ, H0,∑
ν

ZνQν
†]|0〉 +

〈0|[Qµ,[H0,∑
ν

YνQν]] |0〉 (75)

(E[2]Xµ)µ ) 〈HF|[Qµ,[H0 - c2
(1) c2

(1)†F,∑
ν

(ZνQν
† +

YνQν)]] |HF〉 -
1

2
〈HF|[H0 - c2

(1) c2
(1)†F,[Qµ,∑

ν

(ZνQν
† +

YνQν)]] |HF〉 + c2
(1)†〈x2|[Qµ,[F,∑

ν

(ZνQν
† + YνQν)]] |x2〉c2

(1) -

1

2
c2

(1)†〈x2|[F,[Qµ,∑
ν

(ZνQν
† + YνQν)]] |x2〉c2

(1) + c2
(1)†〈x2|[Qµ,

[H0,∑
ν

(ZνQν
† + YνQν)]] |HF〉 -

1

2
c2

(1)†〈x2|[H0,[Qµ,∑
ν

(ZνQν
† +

YνQν)]] |HF〉 + 〈HF|[Qµ,[H0,∑
ν

(ZνQν
† + YνQν)]] |x2〉c2

(1)

-
1

2
〈HF|[H0,[Qµ,∑

ν

(ZνQν
† + YνQν)]] |x2〉c2

(1) (76)
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vanishing terms have been added to obtain eq 76. Introducing
the orbital operator

and the effective Hamiltonian and Fock operator

the contraction in eq 76 may be written as

All contributions to this product may be obtained by procedures
that scale at most like the fifth power in system size. For a
more detailed description of the algorithms for such direct
products ofE[2] times a vector, see ref 9.

We now briefly sketch how the developed method can be
extended to treat contributions from the three-index superma-
tricesE[3] andS[3]. Contracted with two vectors, these super-
matrices occur in the expression for the quadratic response
function eq 54 and its residuesssee, for example, eq 59. Let us
see how the orbital-deexcitation part ofE[3] contracted with two
orbital vectors may be constructed. In eq 73, the four blocks
containing one deexcitation orbital operator and two general
orbital operators are given. Introducing the transformed Hamil-
tonians for two vectorsX1 andX2 in the notation of eq 56

we obtain

The terms in eq 81 may again be calculated with procedures
that scale at most like the fifth power in system size. Similar
schemes can be devised for the remaining terms in the
contraction ofE[3] with two vectors, all of which scale as the
fifth power in system size or less.

VII. Conclusion

We have determined linear and quadratic response functions
including their pole structure and residues to second order in
the fluctuation potential. The time-independent reference wave

function is determined using the standard Møller-Plesset
perturbation expansion. The time-dependent wave function is
obtained by applying, to the time-independent wave function,
exponential operators for orbital rotations and for double and
higher excitations. The time development of the wave function
is determined from Ehrenfest equations for the state-excitation
operators and modified Ehrenfest equations for the orbital
rotations. The modification was made to ensure that the wave
function reduces to the time-independent reference wave func-
tion when the time-dependent perturbation vanishes.

The response functions and their pole structures may be
determined to arbitrary order in the fluctuation potential.
Because of the computational success of the second-order linear
response methods17 and the slow convergence or divergence of
the Møller-Plesset perturbation series,6 we restrict our study
to second order. We furthermore restrict the treatment so it is
only for one-electron operators that the response functions
including their poles and residues should be correct through
second order. With these restrictions, the perturbation expansion
is well-defined and we have developed explicit expressions for
all involved matrices. The linear response function obtained in
this way is identical to the second-order polarization propagator
approximation (SOPPA) obtained 3 decades ago using super-
operator algebra. A connection between perturbation-based
methods using time-dependent expansions and the generalized
Ehrenfest equations with methods using superoperator algebra
has thereby been established.

We have furthermore sketched the computational procedures
for the linear and quadratic response functions. By the use of
direct techniquessthat is, direct contractions of matrices with
one vector and three-index supermatrices with two vectorssall
quantities can be calculated with at computational cost that
scales at most as the fifth power in system size.

It is pertinent to compare the current approach to the
previously developed CC2 method,13 which also allows the
calculation of linear and nonlinear response properties and their
poles at the level of second-order Møller-Plesset perturbation
theory. Whereas the present method uses symmetric matrices
in the determination of the excitation energies in eq 55, the CC2
method uses an inherently asymmetric Jacobian matrix. The
presence of an asymmetric Jacobian leads to a number of
complications in CC2, including different left- and right-hand
side eigenvectors. These complications are avoided in the present
formalism.

The two methods differ also in the choice of operator
manifold. In the CC2 method, only single and double excitations
are included, whereas the present approach includes orbital- and
state-excitation operators as well as the corresponding deexci-
tation operators. When the second-order contributions are
discarded, the present approach therefore reduces to the standard
time-dependent Hartree-Fock method, whereas the CC2 method
reduces to the coupled-cluster singles (CCS) method. The
presence of both excitations and deexcitations in the present
approach leads to a more symmetric approach, where the
eigenvalues of Eq.. (55) occur in pairs with opposite sign and
with twice the number of parameters that occur in CC2. The
computational costs of the present approach and CC2 are
comparablesthere is only a single set of eigenvectors in the
present approach, but their length is twice the length of the
eigenvectors in CC2.
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O ) ∑
ν

(ZνQν
† + YνQν) (77)

H0(X) ) [H0,∑
ν

(ZνQν
† + YνQν

†)] (78a)

F(X) ) [F,∑
ν

(ZνQν
† + YνQν

†)] (78b)

(E[2]Xµ)µ ) 〈HF|[Qµ, H0(X) - c2
(1) c2

(1)†F(X)]|HF〉

- 1
2
〈HF|[H0 - c2

(1) c2
(1)†F,[Qµ, O]] |HF〉

+ c2
(1)†〈x2|[Qµ, F(X))]|x2〉c2

(1) - 1
2
c2

(1)†〈x2|[F,[Qµ, O]] |x2〉c2
(1)

+ c2
(1)†〈x2|[Qµ, H0(X)]|HF〉 - 1

2
c2

(1)†〈x2|[H0,[Qµ, O]] |HF〉

+ 〈HF|[Qµ, H0(X)|x2〉c2
(1) - 1

2
〈HF|[H0,[Qµ, O]] |x2〉c2

(1) (79)

H0(X
1, X2) )

[[H0,∑
ν

(Zν
1 Qν

† + Yν
1 Qν

†)],∑
ω

(Zω
2 Qω

† + Yω
2 Qω

† )] (80a)

F(X1, X2) )
[[F,∑

ν

(Zν
1 Qν

† + Yν
1 Qν

†)],∑
ω

(Zω
2 Qω

† + Yω
2 Qω

† )] (80b)

∑
νω

Eµνω
[3] Xν

1 Xω
2 ) 〈HF|[Qµ, H0(X1, X2)]|HF〉 + 〈HF|[Qµ, H0

(X1, X2)]|x2〉c2
(1) + 〈HF|[Qµ, H0(X1, X2)]|x1〉c1

(2) (81)
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