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The linear and quadratic response functions have been derived for an exact state, based on an exponential
parametrization of the time evolution consisting of products of exponentials for orbital rotations and for
higher-order excitations. Truncating the linear response function such that the response function itself and its
pole structure is correct to second order in MgHiBfesset perturbation theory, we arrive at the second-order
polarization propagator approximation (SOPPA). Previous derivations of SOPPA have used the superoperator
formalism, making the extension of SOPPA to quadratic and higher order response functions difficult. The
derivation of the quadratic response function is described in detail, allowing molecular properties such as
hyperpolarizabilities, two-photon cross sections, and excited-state properties to be calculated using the SOPPA

model.

I. Introduction calculation of frequency-dependent molecular properties. To
achieve the same accuracy as for static properties, we must also
modify the pole structure, as done in the second-order polariza-
tion propagator approach (SOPP¥)In SOPPA, the linear
response function is set up as an extension to the TDHF theory,
with both the response function and its pole structure correct
to second order in perturbation theory.

Hyperpolarizabilities are important for the interpretation and
analysis of experiments in such different areas as nonlinear
optics}2 scattering theory,and the theory of intermolecular
interactions' The accurate prediction of hyperpolarizabilities
is also essential to progress in technologically important areas
such as the design of optical materials. However, theoretical

predictions are difficult to make, depending critically on the ~ SO far, SOPPA has only been derived for linear response
description of electron correlation. The history of the determi- functions and has therefore only been used to calculate second-

nation of the static hyperpolarizability of the neon atom, which ©rder molecular properties such as the frequency-dependent
we have recently reviewetiis perhaps the best illustration of ~ Polarizability. In particular, the SOPPA linear response function

the difficulties that may arise in theoretical and experimental Nas been obtained by expressing the response function of the

The simplest model of electron correlation is provided by truncating the response function such that the response function

second-order MallerPlesset perturbation theory (MP2), which and the poles are both correct to second order in perturba_tion
typically recovers more than 90% of the correlation enérgy. theory. Since the quadratic and hlgher-order response functl_ons
Static molecular properties, in particular molecular equilibrium SO far have not been expressed in the superoperator formalism,
structures and other properties that depend on the total energy SOPPA has not been extended to nonlinear response functions,
have been successfully calculated using this model. By contrast,thereby restricting its use to linear properties.
the MP2 calculation of frequency-dependent molecular proper- In this paper, we demonstrate how SOPPA also may be
ties has been much less successful. To understand the reasoderived from time-dependent perturbation theory by parametriz-
for this failure, we note that the MP2 model represents a two- ing the time evolution of the exact state in terms of exponential
step approach, where a Hartrefeock calculation is carried out  operators for orbital rotations and for higher-order excitations.
prior to the evaluation of the perturbation correction. Since the Truncation of the exact linear response function in such a
response functions arising from this strategy retain the pole manner that the response function and its pole structure are both
structure of time-dependent HartreBock (TDHF) theory, the correct to second order in MgllePlesset perturbation theory
description of the dispersion of frequency-dependent molecularthen gives SOPPA. This approach may straightforwardly be
properties is not improved relative to an uncorrelated descrip- extended to quadratic and higher-order response functions. The
tion.” derivation of the quadratic response function and its residues is
To correlate the response function while retaining the pole described, making it possible to calculate properties such as
structure uncorrelated is clearly not a sound approach to thefrequency-dependent hyperpolarizability, two-photon transition
matrix elementd! and excited-state properti@swithin the
T Part of the special issue “Jack Simons Festschrift”. SOPPA framework.
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Response functions have previously been derived for self- N=[1+Scc —12

consistent field (SCF) and a multiconfigurational SCF (MCSCF) - Z i

states'! More recently, they have also been determined for a

coupled-cluster stat®. Truncating the cluster operator at the The expansion coefficients may be determined from Mgller

Singles and doubles |eVe|, we obtain the COUpIed-ClUSter SingleS'P|esset perturbation theory by So|ving the equations
and-doubles (CCSD) response functions. Further truncation of

the double amplitudes equations to lowest order in Mgller (9)
Plesset perturbation theory gives the CC2 response funéfions.

Indeed, CC2 theory may be viewed as an alternative to SOPPA.to different orders in the fluctuation potential, whexé' refers
where the response functions and their poles are determined tqq the state excitation operators collected in a column vector:
second order in perturbation theory. However, a difference
between the SOPPA and CC2 models is that when the doubles
are neglected, SOPPA reduces to the response function for SCF
wave functions, whereas CC2 reduces to coupled-cluster singles
(CCS) theory. This difference originates from the explicit

inclusion of de excitation operators in the SOPPA approach. ote that the normalization constadtmay be removed from

8

O|[A", Hyj00= O[A9T, F + W] j00=0

X, (IHF|

AOT = | |x,IHF| (10)

Il. Response Theory for a State Determined by
Perturbation Theory

A. Parametrization of the Unperturbed Reference State.

eq 9. We will in the following use the form without the
normalization factor which leads to the same equations as
obtained using standard intermediate normalization. Thus,
expanding the coefficients; in powers of the fluctuation

We consider a closed-shell molecular system described by apotential

time-independent HamiltoniaHo, which we separate into a

zero-order Hamiltoniaf (the Fock operator) and a perturbation

operatorW (the fluctuation potential):
Ho=F+W Q)

Next, we turn on adiabatically a Hermitian perturbation

V() = /7 do V() exp(io + e)t 2

where the positive infinitesimal ensures tha¥/(—») is zero.
From the Hermiticity ofV(t), it follows that

V(w)' = V(—w) 3)

At t = —oo, the system is in the state
|00= N(1 + c,7) + ¢,7) + ++)|HFD
= N1 + ¢;|x,HF| + ¢,|x,MHF| + ++*)[HFO (4)
where theriT are column vectors containing all single, double,

and higher excitation operators, respectively, from the Hartree
Fock stateHF[

= (ala) (52)

7= (apaaka), (Al) = (BJ)

whereas thec; are row vectors containing the expansion
coefficients of these states. We here use indéxdskK, L for
occupied HartreeFock spin-orbitals andA, B, C, D for
unoccupied spirorbitals, whileP, Q, R, Sare used for general
(unspecified) spirrorbitals. The stategare defined as

(5b)

xO=T|HFD i=1,2,... (6)

G = Ci(o) + Ci(1) + Ci(2) 4 eee (11)

and inserting eq 4 into eq 9, we obtain to second order the
following set of equations

MF[AQT, F]HFO=0
> 1) X I[A, FIIHFCH cHFIA®Y, Flixi0 +
|

(12a)

HFI[AQT, W][HFC= 0 (12b)
> [(e?) BHIA®T, FIHFCH cPHAACT, Flix 0 +
|

> () BIAD, W HFCH cPIHFIIAYT, W ix 0 +
I

> @) 'gUIAT, WxE=0 (12¢)
!

Equation 12a shows that

=0 (13)
From eq 12b, we see that only doubly excited statesl=
73HFOgive nonzero first-order contributions & and that
these contributions are identical to those obtained in a conven-
tional derivation. Similarly, eq 12c shows thr;ﬁ) with i = 1,

2, 3, 4 give nonzero second-order contributions.

B. Parametrization of the Time Development of the
Reference StateThe time development of the reference state
is parametrized in terms of exponential operators for orbital
rotations and higher excitations working on the unperturbed
reference state:

10(t) = exp(ic(t)) exp(iS())|0C] (14)

Here the Hermitian operata(t) generates a unitary transforma-

With the operators defined as in eq 5, parts a and b, these statetion of the orbitals and contains a set of time-dependent orbital

constitute an orthonormal set
(7)

(heret), denotes element of 7), so that the normalization
constant becomes

[HF|7, ) HFC= 0,0,

amplitudes

k() = ;[ ORI AGEIENES
Y [k,(Q, + €.()Q,] (15)
u
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Likewise, the Hermitian operato§(t) generates a unitary My — [ 1) ;
CoE , i . t) = d exp(—iw + et 19a
transformation in the configuration space and contains a set of < f*w w1 (w) expio + <) (192)

time-dependent configuration amplitudes: K(Z)(t) _
S0 = 3 [S(OXIHF + SO HFIX] = S S doydop®(0,0,) expli( + o) + 20t
&=, (19b)
! 16

where the summation is over all statesxcept the single-excited gz)(t) =
states contained iRr;. o oo 2) =

The time dependence of the orbital and configuration f,mf,m 0o, 4, S @1,0,) €xp(-i(; + @) + 26t (19d)
parameters,i(t) andS(t) is introduced in order to describe the
time evolution of the exact state in the presence of the
perturbation operatoY(t) in eq 2. Compared to the standard
parametrization of the time evolution of an exact state previously 2 e
used in ref 11, eq 4 includes orbital rotations instead of state 3 )(wl’wZ) =« )(wz,wl) (20a)
excitations betweefHFJand single-excited determinants.The 2) )
replacement of single excitations with orbital rotations is is also SAwy0) = Swy0) (206)
used in Biickner coupled cluster theok We here use it in a
slightly different way: instead of using orbital rotations to
eliminate the single excitations from the wave function, we use
the orbital rotations to eliminate the time dependence of the [@|A|0C= [0|A|0C
single excitations. As will be discussed later, the presentuse of .| o e )
« and S without single excitations has the advantage tBat 'ffoo L/:oo dov (0] V(w) + SV(w), Al|0@XP(—iew + €}t
vanishes in the absence of the fluctuation potential. Another
difference between the present and previous formS igfthe
present use of state-transfer operatbtisk|,| xTHF| working ) 1 peo oo 1
on the stat¢0Cwhereas the previous approach used state-transfer €XP(1(@; + @;) + 26t — 3 S, ) dw, dw, 0[SV (w,),
operators of the fornfOIN|,|NI0| where|NCis an basis for the 1 . w oo
orthogonal complement t¢0L] The two forms of the state- [5( (wy), All10eXP(=i(w, + wy) + 2€)t _f_oo f_mdwldwz
transfer operators spans the same space except for a phase-factor. 1) @ = _
The present form will ease the perturbation expansios a$ O[SV w,),[Dw,), Al 0Expi(w, + w,) + 26)t
itis expressed directly in terms of the Hartreock determinant i [ [ doy do, 0[P (0y,0,) + S2w,0,), AI0D
and double and higher excitations. We note that, for a complete .
description of the time development of the reference state, a exp(i(wy + wy) + 260t (21)
phase factor should be included in eq 14. However, since we
consider the determination of response functions and not the
wave function as such, this phase factor can be ignbred.

C. The Linear and Quadratic Response Functions.To
determine the linear and quadratic response functions, we begin

where we require the second-order corrections to be symmetric
in the frequencies:

Inserting the frequency-expansions of the wave function cor-
rections of eq 19 into eq 18, we obtain

1 00 [
=5 S doy do, D[ D(0), [ (w,), A 00

Comparing eq 21 with the formal expansion of an expectation
value in terms of response functions

[0]AIOC= O]A|00 " do [IAV(w) Tjexp(—ie + e)t +

by considering the time dependence of the expectation value 1, po .
[0|A|/00 of a one-electron operatof, noting thgt, for our szfwdwlde D]A’V(wl)'v(wZ)ml-wz
purposes, we need only expand the wave funci@aiof eq 14 exp(i(w, + w,) + 26)t (22)

to second order in the external perturbation:
we may identify the linear response function
i = kD) + 2t) + - (17a)

(IA; Vi = —i0|[(x"(w) + SV (w), Al|00 (23
s=S90) + L9(t) + --- (17b) (w), = —i0[[(x(w) (w), Al (23)

and the quadratic response function
We have here used that® and 39 vanish, as will be

demonstrated later. Substitution of these expansions into eq 141 V(w,), V(w )W}, =
ields to second order
’ —P100/[x (), [ (@,), AlT100- P1,0[SV(wy),
o 1) L 1) ()
[0|A|0C= O|A|0C— i|[«™M(t) + S(t), A0 %I]]M[K(l)(t), [S™(w,), AllI0T- 2P,,0/[SV(w,), [« Y(w,), AT} |00~
20|« w,,0,) + S w,,0,), A|00(24)

[V, All 00~ ZoisV(0),[S), All 00 D[S,
2 whereP;, averages over the two permutations of the frequencies
[«B(t), A |00 i0][«9(t) + SP(t), A]|001(18) w1 andwy;

- - ined i 1
Since the response functions are defined in the frequency ratherplzm[gl)(wl),[,{(l)(wz), Al 100= Z0[SY(w,),
than the time domain, we now introduce wave function 2

corrections in the frequency space. By analogy with eq 2, we (1) 1 1) [6h)
N [« D@,), 1T} 0+ SOI[S™ (@,), [ (w,), AlT100(25)
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In eq 24, we have thus explicitly ensured symmetry between B. Expansion of the Time-Dependent Equations in the
index 1 and 2 in accordance with the required permutation External Perturbation. We now expand eq 31 in orders of
symmetry of the quadratic response function the external perturbation, restricting ourselves to terms that are
linear and quadratic in the amplitudes. Inserting eq 17 into eq
IAV(wy), V(wz)D]JJWZ = HAV(wy), V(wl)m;z,wl (26) 31 and collecting the terms linear in the perturbation, we obtain

) N ) ~ the first-order time-dependent equations
We have thus identified the terms of the order expansions in

the external perturbation &andx that are needed for the linear g , T
and quadratic response functions. In the next section, we OI[A, S+« ioC= —il0[AT, V(] |0TH

consider what terms to include in the expansions of the time- O|[AT, Hol, S™]00H O[AT,[HoxcM]100(32)
independent and time-dependent wave functions to obtain the
response functions (including their pole structures) correctly to

. ; ) Next, collecting second-order terms, we obtain the second-order
second order in the fluctuation potential.

time-dependent equations
Ill. Form and Solution of the Time-Dependent Equations

, . ' 1 .
A. Equations for the Time Development of the Reference iOI[AT, §? + ®]j00- §m|[[ATa 84, sMj100
State. The time development ¢0(t)Cis determined by requiring

Ehrenfest's theorem to be fulfilled for the operators in egs 15 - %E(DI[[AT, sY, §Mjo- %E@I[AT,[I%(D,K(D]] |00
and 16, which describe the time evolution [@(t)0 It is b X " )
convenient to collect these operators in a vector (here in row — m|[[A", &M, S¥jj0= I[[AT, Hol, S?]j00
form): + O[A"[Hox® 1 [0T+ DT A", V(9] S™]j00
A= (g, [XTHF, |XgTHF, ..., 73, [HFIR,|, [HFOR| ...) + ZOIIA, Hgl, SV, S™00+ I[A",[V().£]] 00
— (At Af -
= (Qu Qe Qu Q) =7) DI [Hox )], SM]00H SO’ [Howes],4.]] 100
whereQ! are the single orbital-excitation operators aithe (33)

double and higher state excitation operators. In the presence of
the time-dependent perturbation, we introduce the transformedtq gptain eq 33, we used the Jacobi idefitity
operator basis

Q, [A[B, C]] +[B,[C,A]] +[C[AB]] =0 (34)
QX 1
. to rewrite
A=lgt (28)
o) - %um[[/\*, O]V j00+ %[m[[AT,K(”], “V]j00=
where - %Eﬂ)l[AT,[k(l),K(l)]] |00 (35)
Q, = exp(ic(t))Q,exp(-ix(t)) (29)

. 5t - ~ The first- and second-order equations have identical forms for
and similarly forQy, Q,, andQ,. Use of the transformed basis  the orbital and state operatd@ andQ,. By construction, the

in eq 29 corresponds to the use of orbitals at time zero-order equations are trivially satisfied, with= S = 0
st . + . corresponding tg0C= |00
Fp(1) = exp(i(t)apexp(-ix(t)) (30) C. The First-Order Equations. To solve the time-dependent

equations egs 32 and 33, we use the frequency expansions of
the wave function corrections of eq 19 and of the external
perturbation eq 2. For the first-order equations, we obtain from
eq 32

The time evolution of/0(t)Omay now be determined using
Ehrenfest’'s theorem for the transformed operatord bin eq
28:

%E@(t)l Q.1 0> @(r)‘(%@ﬂ) o) = —i(D(1)I[Q,, Hy +
V(D)1 0= DI[Q,,, Hl[0) (31a)

J7 do exp-io + t(@D][A", S w) + «(w)] |00
— O[[A", Hgl, SY()]100~ |[A",[Hox(w)]] 00) =

d- = - D\l i

G 2M1Q, 0()L- @(t)‘(ﬁQx) O(t)D— —0MI[Q, Ho + S, do exp(-io + (—iD[[A", V(w)]|0) (36)
V(1)]10(t) 0 (31b)

and similarly for their adjoints. The terr|[Q,, Ho]|0Din which gives the first-order response equations

Ehrenfest’s theorem fo@, has been introduced to ensure that

Kai(t) vanishes in the absence of the time-dependent perturbation@|[A", SY(w) + Y (w)]100— M|[AT, Hyl, SY(w)] 00—
in agreement with the absence of a zero-order term in the .

expansion of« in eq 17. We likewise note that thg(t) OI[A",[Hoi V(@)1 100 = —iDI[A", V()]|00 (37)
parameters vanish in the absence of the perturbation as eq 31b

for the state-transfer operators enter®( reduces to eq 9in  The terms involving the zero-order Hamiltonian may be written
the absence of an time-dependent perturbation. in terms of the matrix
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0/[Q,.[Ho, QU100 I[[Q,, Hql, Q1100 OI[Q,.[Ho, Q,]1100 M[[Q,, Hyl, Q110
221 _ | DI[Qu[Ho, QUIIOD DII[Q,, Hol, QJ1100 DI[Q[Hy, Q1110 DI[Q,. Hol, Q10D

0/[Q}.[Ho. Q11100 MI[[Q}, Hl, Q1100 W[QL.[H,, Q,11100 M|[[Q}, Hgl, Q,]10C]

[0/[Q},[Ho, Q11100 I[[QY, Hl, QU100 M[QL[H,, Q,11100 I[QY, Hl, Q110

(38)

The diagonal block&D|[Q,,[Ho, QI]] |00and [(D|[Q;,[Ho, Q,]11000n eq 38 are not symmetric whe@(ls defined by means of a finite
perturbation expansion. To see this, we use the Jacobi identity eq 34 to evaluate the difference between a matrix element and its
transposed element:

/[Q,.[Ho, Q1100 DI[Q,.[H,, QIT110C= M|[H,,[Q,, Q)11 j00 (39)

The reference stat@Uis determined by solvin@|[A©T, Ho]|00= 0 to a given order in the fluctuation potential; see eq 12. Thus,
if |Ols obtained to ordem, the matrix element|[Ho,[Q,, QI]] |0Cis of ordern + 1. Since we here neg@Conly to second order,
we can replace the asymmetric formE#! in eq 38 by the following symmetric form by introducing third-order changes

DI[Q,. Hy, Q11100 DI[Q,, Hol, Q{1100 OI[Q, [Hy, Q11100 MI[[Q,, Hgl. Q][0
et _ | DIQu[Hor Q1100 DI[[Q,. Hyl, Q100 DI[Q,[Ho, Q11107 DIQ, Hol, Q110

~ | IQLHo, Q11100 DI[[Q), Hgl, Q11100 DI[Q, Ho, Q1100 DI[Q), Ho, Q10T (40)
[0][Q},[Ho, Q11100 I[[QY, Hl, QJ1100 M[QL[H,, Q11100 MI[[QY, Hl, Q110
where A, B, C] is the symmetric double commutator
[A B,Cl= % (I[A, B], C] + [A/[B, CI]) (41)

The remaining diagonal blocks &2, [0|[[Qy, Hol, Q;]|0Dand Q[[QI, Ho], Q,]|0C) do not need to be symmetrized, as shown later.
To represent the remaining parts of the first-order equations eq 37 in matrix form, we introduce the symmetric metric matrix

0/[Q,, Q!1100 [Q,, Q}]100 M[Q,, Q1100 M([Q,, Q|0
g2 _ | DIQ, Q1100 [[Q,, Q|00 M([Q,, Q,1100 M|[Q,, Q]|00]

= 42
[0/[Q;, Q1100 M[Q;, Q100 0][Q;, Q,]100 DI[Q;, Q1|01 “2
[0/[Q}, Q}1100 I[Q}, Q}1100 MI[Q}, Q,1100 MI[Q}, Q1|0
and the vectors
O[Q,, V(w)]10 K
0[Q, V(w)liod| |V
Vvl (w) = mI[Q], V(w)]lor] ol = 0 (43)
0][Q}, V()]/0 i
We can now write the first-order response equations eq 37 in the form
(E” — 0S8 =ivi¥(w) (44)

We shall discuss the expansion of the matri&k E[?, andV[H(w) in orders of the fluctuation potential later.
D. The Second-Order Equations.Inserting the frequency expansions of the first- and second-order wave function corrections
from eq 19 into eq 33 and using the definitionsE# and 92 from eqs 40 and 42, we obtain

(01+ 0) (87 = E) aD(0y,0,) = Pyo|— Jon(OIIAT, )], S ]I05+ DA, (w,)], S(w]I00 — Jo,DI[A',
[0) kD100 iy DL A @), S 10T DA, Vi), S0 )]l 03HSOITAT, Hol, S0,

S @05+ DI M@y (@)1} 00+ DA (Hox (@), S7(@)110H FOITA [Hy eV qu (45)

To express the second-order equations more compactly, we introduce the three-index super8fatendsR], operationally
defined in the following manner
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Z Ji] aj(l) aﬁ2)=
J
. (mum?;@“ QL+ 90 3§79 + Qo S OIALY QL+ § Q)L >§'Q+ Q) |o§ ¥
gmuA?,[;(Ki}) Qi+ #Q), 3 (67 QL+ Q)00+ DA, ;w}? Q. +xk*Q), 2(3/2) Q) +5*Q,)1100(46)
JZEg;;] o o =
%mm{ Al Hl, 3 (87 Qiot S50 5 (87 Q) S QUIIOGH DITAL tHo § (67 Q1+« QI 3 (87 O+
S QI 00k %mn[A?, [Ho 3 (67 Qu Q1. 3 (7 Q1+ Q)N 00 (47)

We furthermore introduc&/@l2l, obtained fromEl in eq 40 by replacinddo with V*. The second-order equations can now be
written as

(@ + @)% = E¥] o (wy,0) = —Pyl(i, 8% = iE®) awy) aP(wy) — V(@) aP(w))] (48)
The contractions of vectors withl®] and S9! is discussed in greater detail later.

IV. Response Functions and Their Residues

A. The Linear and Quadratic Response FunctionsThe linear response function is obtained by inserting the first-order correction
as obtained in eq 44 in the expression for the linear response function eq 23. Renaming the perturbationV§péretd and
introducing

e | Y\ [[el (49a)
B = |[A], BJ|00 (49b)

we obtain
IAB), = —~AME? — »s?)~'gM (50)

The linear response function may thus be calculated by solving one set of linear equations at each ftéquency.

The quadratic response function is likewise obtained by inserting the first- and second-order corrections eqs 44 and 48 into the
expression for the quadratic response function eq 24. We next rexamg and V(w-) to B and C, respectively, introduce the
vectorC[ by analogy withBI[!! of eq 49b, and finally generafi?! andC!? from the original definition o2l in eq 38 by replacing
Ho with B and C, respectively. Introducing the matrix

O[[Q,. [A Q11100 M[[[Q,, Al, Q1100 M[Q,, [A Q]1100 M[[Q,, A], QJI0
o _ 1 mIQ, [A Qlll00 MI[Q, Al, Q[]|00 I[Q, [A, QJ1I00 M[[Q,, Al, Q|00
~ 2{o)[Q]L, [A QIII0T I[[Q), Al, Q}1100 M[Q], [A, Q,]1100 MI[[Q}, Al, Q,]|0C]
/[Q}, [A, Q]T1100 |[[Q}, Al, Q[]00 [Q}, [A, Q11100 MI[[Q}, Al, Q110

we find that the quadratic response function may be written in the form

(51)

MAB, M), ,, = 5 BHE? — 0,8 %A + ANE? - 0,89, '+ § AHED — (0, + 0)5%);  BE(EP -
[} [}
Syt Y + ;A-[”(Em — (@1 + 0)8)* CAEP - 0,87, Bl - _g APE? — (0, + 0)SP) HER + B —
1] ijkimn
0. — 0,99 x E? — 0,81 BIED — 0,871 Y (52)

For a given pair of frequencies; andw,, the quadratic response function may thus be evaluated by solving three sets of first-order
equations:

N, + w,) = (E® — (0, + 0,) ) AT (53a)
N°(w,) = (E® — w,5%)~*BM (53b)

N%(w,) = (E® — %)~ 'cM (53c)
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which allow us to write the quadratic response function as
. _ b
IAB, CH} ,, = YN () (A? + AN (w,) +
]

> N, + 0)B Ni(@) + Y Ni(@; + 0,)C NY(wy) —

1 [

ZN?(wl + wz)(Ei[j:E + Ei[l:jj] — Wy ji] - Wy Sj])ij(wl)Nﬁ(wz)

]

(54)

Olsen et al.
X and Xg, followed by the solution of the linear equations
N¥(w; — wg) = [EP — (0 — o)) ST AHT  (58)

and the identification of the transition moment as

[@IAIf= 6, [0|A|0C- ng AP+ X+
]

ZN?(wf — w)(ER + ER + oSy — o S)X X (59)
1]

An important application of quadratic response theory is the
calculation of two-photon transition moments. Whereas the two-
photon transition moment was traditionally considered a property
connected with the cubic response function, it was shown in
ref 11 that it may also be extracted as a single residue from the
guadratic response function. The two-photon transition moment
between states 0 aridor the operator® andB at frequency

w1 may be obtained by first solving eq 55 to obtaipand Xj,
Ipllowed by the solution of two sets of linear equations:

N¥w; — ) = (E? — (0; — 0)S?) AT (60a)

Note that only first-order equations are needed to calculate the
guadratic response function for a given set of given frequencies.
For variational wave functions such as SCF and MCSCF wave
functions, it has previously been established that the first-order
correction to the wave function is sufficient to determine the
quadratic response functiéh.

B. Excitation Energies and Residues of the Quadratic
Response FunctionsThe linear and quadratic response func-
tions obtained above have the same structure as those previousl
obtained for SCF and MCSCF wave functions, differing only
in the detailed form of the various vectors and matrices. We
can thus straightforwardly take over the identifications of
residues previously made in SCF and MCSCF thedfies.
However, before discussing these identification, we shall briefly The two-photon transition matrix element is then obtained as
comment on the excitation energies obtained in the present
approach. J P réEf(wl) = ZN?(wf - a)l)Bi[jz]ka— ZNP(_wl)(Ai[jz] +

Motivated by the occurrence of the exact excitation energies , I . . . U .
as the poles of the exact linear response function, the excitation ~ A“)X;+ Y (BN + B + 0,57 — o SN (o; — wy)
energies are in the present approach obtained as the poles of I
the linear response function eq 50, by solving the symmetric N}’(—wl)ka (61)
V. Determination of the Response Matrices

N°(—w,) = (E® + »,5%) '8! (60b)

generalized eigenvalue problem

EPIX, = ;89X (55)
In the preceding discussion, we introduced a number of

Because of the paired structure B! and S in egs 40 and matrices-in particular,E[ andS2. However, only their general
42, with the appearance of deexcitation as well as excitation index structure was presented; their detailed form was not
operators, the eigensolutions are also paired. Thus, if the vectorexamined. In this section, we discuss these matrices in detail,

analyzing which terms in the expansion|6fiare required for

the construction of the matrices. We begin by discussing what

operators inc andSmust be included to calculate the response
(56) functions to second order in the fluctuation potential. Next, we
derive the form of the various blocks of the matrices. This
information is then used in the following section to set up
algorithms for the direct contraction of response matrices with
one or several vectors.

A. Expansion of S in the Fluctuation Potential. In the
absence of the fluctuation potential, only a single determinant
v is needed to describe the unperturbed and perturbed stafes so
in eq 14 vanishes in this limit. Th8 parameters are thus at

LSS

is an eigenvector for the generalized eigenvalue problem eq 55
with eigenvaluew;, then the paired structure &? and S?
ensures that the related vector

XP = \Z(X (57) least of first order in the fluctuation potential, unlike tke
iz parameters in eq 14, which contain zero-order terms. On the
Z, other hand, no terms i of second order in the fluctuation

potential are needed to calculate the expectation value of a one-

is an eigenvector of the generalized eigenvalue problem with electron operator eq 18 to second order. This is easy to-show
eigenvalue—w;. This paired structure of the solutions of the remembering that by definition only contains double and
linear response function is well established and has been utilizedhigher excitations. Consider, for example, the term in eq 18 of
to set up an efficient iterative method for solving the eigenvalue the form [O|[S, A]|0L Any second-order term ir§S must
problem?1® necessarily occur together with the zero-order téfAlof the

Since the residues of the second-order linear response functiorwave function|OL] However, terms such adHF|[S A]|HFO
have already been analyzed in detéilve focus here on the  vanish trivially sinceA gives zero matrix elements between the
residues of the quadratic response function. As previously Hartree-Fock and states higher than single excitations. The
discussed in SCF and MCSCF theoriéthe transition moment ~ same argument holds for the other terms that contain a single
of an operatorA between two excited statésand g may be S operator and one or severaloperators. In the term that
obtained by solving first the linear response equations eq 55 to contains twaS operators, only the terms fathat are linear in
generate the excitation energiesandwg and the eigenvectors  the fluctuation potential give contributions that are at most
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quadratic in the fluctuation potential. In short, to determine the 0/[Q,, Q.]|100= M|[Q], Qljj0C=0 (65a)

linear, quadratic, and higher order response to an external oy e

perturbation, it is only necessary to include termsitiat are 0|[Q QT]|OD= _ m|[QT QJI0C= 6 (65b)
X1 ey X1 Xy Xy

linear in the fluctuation potential.

Let us next consider what excitation ranks should be included . .
in S Remember first that single excitations are excluded by Let us next examine the_ blogks of_t_he symm_etrlc fo_rm of
definition in S Whereas the corrections to the Hartrd®ck El?) of eq 40. The Hamlltc_)mtho is partitioned as in eq 1 |_nto
wave function from triple and higher excitations are of second the Fock operator of excitation rarsk= 0 and the fluctuation
or higher orders in the fluctuation potential, this is not Potential with excitation ranks-2 < s < 2. Since Q., F, Q}]
necessarily true for the corrections due to the external perturba-has rank zero and sinceQ], W, Q] contains terms with
tion. However, a closer analysis reveals that only double excitation ranks-2 < s < 2, we obtain
excitations are required to determine the response functions and
the pole structure correct to second order in the fluctuation [p|[Q , Ho, QI]|OD= 0|[Q,, F, QI]|OD+

potential® We conclude that only double excitations should be T N @) (@
included inSand thatSis at least first order in the fluctuation ~ OI[Q, W, Q,]I0C= HF|[Q,, F, QJIHF(1 — ¢;” ¢;”) +
potential. T (1)t T (1)

B. The Structure of §2, El2, and VI¥(w). We now discuss EH:)TFl[Q W QV]',:*F[H— & DllQu F. Qﬁr]lxzm:z)—F
the terms that should be included to obtain the excitation €3’ Xpl[Q,, W, QJIHFIH HF|[Q,, W, Q,]Ix,[¢;” (66a)
energies and transition moments of single-excitation-dominated
excitations to second order in the fluctuation potential. Let us /[Q], Ho, Q10C= M|[Q,, H,, Qf]I0F  (66b)
consider the various blocks & andE2. The blocks where
both indexes refer to orbital excitations must be obtained to For the block containing two orbital excitatior[§|[Q;,[Ho,
second order in the fluctuation potential. Sir& of at least ' o) the contributions from the Fock operator vanishes as
first order in the fluctuation potential, the remaining blocks may [F, Q1] is an excitation operator and therefore commutes with

be calculated to lower orders. Thus, the blockSéfandER! { N t : o
that couple orbital and state rotations need only to be obtainedv(ag Qtjtgi?n,[w, QI has terms with excitation ranks9 s < 2,

to first order, whereas the blocks where both indexes refer to
transfer operators are needed to zero order. : : : :
Let us first consideS? as defined in eq 42. As this matrix  [0[[Q,,[H,, Q,]1/0C= O[[Q,,[W, Q,]]|0C=

is manifestly symmetric, we need only consider the blocks on HETOT TW. OMIHFCH <o 1ot IW. O HED (67a
or below the diagonal. In th&|[Q,, Q[]|00block, we notice 1QuIW, Q.1 2 Bal[QuIW. QNI (672)

that [Q,, QI] is an operator of zero excitation raflso only 10 H 0= [0 [H.. OO0 67b
terms of identical bra and ket excitation ranks give nonzero 1Qu[Ho Q111 1Qu[Ho Q111 (67b)

contributions. We therefore have . . .
The mixed blocks, containing one orbital operator and one state

0|[Q,, Q10C= MF|[Q,, QNIHFL — ¢ V) + operator, should be calculated to first order in the fluctuation
e ! Wt T 0 potential. From rank considerations, we find
G X[Q,, QlIx e (62a)

+ T
0[Q!, Q,]100= — ][Q,, Q100 (62b) OI[[Q,, Hol, QJI0E= W[[[Q,, Hol, QJI0C= 0 (68a)
As all excitation operators commute among themselves as do OI[[Q,, Hdl, Ql]|00= HFI[Q,, WO (68b)
all deexcitation operators, the remaining orbital blocks vanish: " "
OII[Q,» Hol. QJ100= WI[[Q,, Hal, QJI03  (68c)
0/[Q, Q]I0C=0 (63a)
[(DI[QT, QI] 0= 0 (63b) Finally, the blocks involving only state operators need only be

evaluated to zero order. Whereas the blocks containing only
excitation operators or only deexcitation operators vanish to zero

The blocks that couple orbital operators with state operators .
order, the remaining blocks are nonzero:

need only be obtained to first order in the fluctuation potential.
Since only double excitations contribute to first order, we find

that these coupling blocks vanish to first order: 0[[Qy Hal, QJI0C= E(D|[[QI, Hdl, Q;]|OD= 0 (69a)
[0/[Q,, QII0E=[0]Q, IXIHF|03- DXIHF|Q,0C= 0 (64a) OI[[Q, Hql. Q110C= XIFIyCH 6, JHF|F|HFL (69b)
0[Q}, Q}1/05=|Q; |XTHF|05- [O|XTHF|Q}0T= 0 (64b) OI[[Q}, Hel, QI00= MI[[Q,, Hl, Q1107  (69c)

T _ ’r _
0[Q,, QJI0E= — O][Q,, QJI0B =0 (64c) Clearly, these blocks are symmetric to the required order.

/[Q,, Q]100= — M|[Q/, Ql]j00=10 (64d) Turning our attention /M in eq 43, we note that the
elements involving orbital operators should be calculated to
Finally, the blocks that involve two state operators should only second order in the fluctuation potential, whereas those that
be obtained to zero order. Whereas matrix elements betweennvolve state operators should be calculated to first order. Since
two excitation operators or between two deexcitation operators V(w) is a one-electron operator, the commuta@y, [V(w)] has
vanish, those that involve both excitations and deexcitations do contributions of excitation ranks-1 and 0. We therefore
not vanish: obtain
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0/[Q,. V(@)]|00= HF[Q,, V(w)]IHF{L — ¢ ¢§) +
D'%,[Q,, V)], + HFI[Q,, V(w)]ix,e? (70a)

O[Q}, V(®)]|0Z= — ][Q,, V(-)] |03  (70b)

The elements involving state operators are given by

0][Q,, V(w)]]0C= X|V(@)[x,65" —
HF|\V(w)|HFEY (71a)

0[[Q}, V(»)]10C= — 0][Q,, V(—w)]|0F  (71b)

It is interesting to note that all above matrices are identical to
those obtained using the SOPPA superoperator aldebra.

C. The Structure of EB], S31, and VI2(w). The three-index
quantitiesS®l andEB! both contain 4= 64 blocks. Since their
elements are obtained in the same manner as thoSél @ind
El[, we only give the final expressions here. In general, a matrix
element containing state operators is only required to order 2
— | in the fluctuation potential. With this restriction, most of
the blocks of33! andEF! vanish. For the unique nonvanishing
blocks of S, we obtain

0[[Q,.[Q}, Q,I1100= HFI[Q,.[Q], Q] X,

OI[Q, Q1 QI00= ¢§”"B,I[Q,, QX ¢FHF
[Q.. QJIIHFI(72b)

(72a)

Likewise, the unique nonvanishing blocksE#! are given by

0/[Q,.[[Hy Q11, Q!11100=
HF([Q,.[IW, Q!], QL1IHF(73a)

0[Q,.[[Ho, Q11, Q,I1100= HFI[Q,[[F, QI Q111 &? +
HF|[Q,.[[W, Ql], Q,J1 IHFTH
HF([Q,.[IW, Q1, Q111,63 (73b)

O[[Q,.[[He Q,], QLT1100= HFI[Q,.[IF, Q,]1, QL111x, 6P +
HFI[Q,[[W: Q], QLTI HFIH+
HFI[Q,.[[W, Q,], QLT X, (73c)

0/[Q,.[[Hy Q1 Q,1100=
HF[Q,[IW, Q,], Q,I11x,c” (73d)

O/[Q,.[Ho, QTl, QL1100= HFI[Q,.[W, QI IxCH
S 3[Q,[F, QUNIXT- cPHFI[Q,[F, QI HFO(73e)

O/[Q,.[Ho, QI QJIOC= HFI[Q,.[F, QI HFES —
X[[Q,.[F. QX" — XI[Q,.[W, QI [HFD (73f)

O[[Q,.[He, Q.11 QII0T= HHF|[Q,,[W, Q,IlIXT (73)
O[[[Q,.[Ho, Q]I QJIOT= — X([Q,.[W, QJI[HFT (73h)

Finally, V[3(w) has the following unique nonvanishing elements

Olsen et al.

O|[[Q,, V(»)], Ql1I00= HF|[[Q,, V], Q)IHFO
@ = N + SBI[Q,, VIw)], QIIx,5) +
P I[[Q,. ()], QIIHFI (74a)

O/[Q,, V(»)], Q1100 HFI[[Q,, V(w)], Q]Ix,& (74b)

O|[Q,. V(w)], Qf]I00=
$"3,I[Q,, V()] IXO— cPMHFI[Q,, V(w)]IHFD (74c)

OI[[Q,, V(w)], QJI00= HF|[Q,, V(w)]|HFE —
X[Q,, V(w)][x,85 (74d)

O|[Q, V(w)], Q]]|0=
X V(w)|y— 6Xy[H-I FIV(w)|HFO(74€)

VI. Computational Aspects

The indexes of the various matrices discussed in the preceding
sections have the dimension of twice the number of single and
double excitations. As the matrices contain two or three such
indexes, they cannot be explicitly constructed and stored.
Moreover, the matrices are not needed as such. When iterative
methods are used to solve the generalized eigenvalue problem
of eq 55 and linear equations such as eq 60b, only products of
E[@ andS2 with vectors are required. Algorithms for the direct
generation of such products have previously been desctibed.
They not only eliminate the need for the explicit storag&&f
and §2, but they also have a lower scaling than the explicit
construction ofE? and S2. With these direct methods, the
evaluation of excitation energies and linear response functions
has the same scaling as the standard MP2 energy calculation.

Consider, for example, the contribution to that partEfiK),
where the free index refers to an orbital deexcitation from
the orbital part ofX. Using eq 40, we obtain

(E®X o), = 0I[Q, Ho, Yy Z,Q1I0TH
0I[Q,.[Ho. ) Y,Q.11100(75)

where inXqm, the elementZy and Yy in eq 56 are zero. From
the identifications in egs 66a and 67a and from the Jacobi
identity eq 34, we obtain

(E¥X,), = HF[Q,[H, — &’ §''F, 5 (z,Q) +
Y,Q)I IHFC- EDHH[HO -’ FFIQ ,Z(ZVQI +

Y, Q)N IHFTH ¢'3,/[Q ,[F,Z(ZVQI +Y,Q)1] xS -

gcé”*&zuF,[Q ,Z(ZVQI +Y,Q 5 + ¢V '3|[Q,,

1
Mo Y Z.Q; + Y,QNIHFD- ~c;” B [Ho[Q,, (Z,Q) +
Y, QN HFCH HFIQ,.[Ho Y (Z,Q) + Y,Q)TI .25
1
~ SBFIH[Q,. Y (Z.Q1 + Y.QII e (76)

To simplify the expression and, in particular to eliminate the
explicit reference to the fluctuation potential, a number of
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vanishing terms have been added to obtain eq 76. Introducingfunction is determined using the standard MgHPtesset

the orbital operator

o= Z(LQI +Y,Q) (77)

and the effective Hamiltonian and Fock operator
Ho(X) = [HO,Z@QI +Y,Q)] (78a)
(78b)

FO)=[F.y Q)+ Y,Q)]

the contraction in eq 76 may be written as
(E®X,), = HFI[Q,, Ho(X) — ¢’ ¢ F(X)]IHFDI

1
— STHFIH, — ¢’ ¢;'F.[Q,, Ol HFD

+ IQ,, FOMNES — 26 RF.[Q,, O] b,
+ 1,1Q,, HoOTIHFT— 26 %,i[H, [Q,, Ol HFL
+ THFI[Q,, Hi0Q (25" — STHFI[H,[Q,, Ol ,68” (79)

All contributions to this product may be obtained by procedures
that scale at most like the fifth power in system size. For a
more detailed description of the algorithms for such direct
products ofEl?l times a vector, see ref 9.

We now briefly sketch how the developed method can be
extended to treat contributions from the three-index superma-
trices ERB! and S31. Contracted with two vectors, these super-

perturbation expansion. The time-dependent wave function is
obtained by applying, to the time-independent wave function,

exponential operators for orbital rotations and for double and

higher excitations. The time development of the wave function

is determined from Ehrenfest equations for the state-excitation
operators and modified Ehrenfest equations for the orbital

rotations. The modification was made to ensure that the wave
function reduces to the time-independent reference wave func-
tion when the time-dependent perturbation vanishes.

The response functions and their pole structures may be
determined to arbitrary order in the fluctuation potential.
Because of the computational success of the second-order linear
response metho#fsand the slow convergence or divergence of
the Mgller-Plesset perturbation serigsye restrict our study
to second order. We furthermore restrict the treatment so it is
only for one-electron operators that the response functions
including their poles and residues should be correct through
second order. With these restrictions, the perturbation expansion
is well-defined and we have developed explicit expressions for
all involved matrices. The linear response function obtained in
this way is identical to the second-order polarization propagator
approximation (SOPPA) obtained 3 decades ago using super-
operator algebra. A connection between perturbation-based
methods using time-dependent expansions and the generalized
Ehrenfest equations with methods using superoperator algebra
has thereby been established.

We have furthermore sketched the computational procedures
for the linear and quadratic response functions. By the use of
direct techniquesthat is, direct contractions of matrices with
one vector and three-index supermatrices with two veetalls
guantities can be calculated with at computational cost that

matrices occur in the expression for the quadratic responsescales at most as the fifth power in system size.

function eq 54 and its residuesee, for example, eq 59. Let us
see how the orbital-deexcitation partE#! contracted with two
orbital vectors may be constructed. In eq 73, the four blocks
containing one deexcitation orbital operator and two general
orbital operators are given. Introducing the transformed Hamil-
tonians for two vector&! and X2 in the notation of eq 56

H (X, X3) =
[(Ho Y (Z, QU+ Yo Q1Y (Z2 QL+ Y2 Q)] (80a)

FOC, X3 =
[F.Y @ Qi+ Y, Q)Y Q)+ Y, Q)] (80b)

we obtain

2

E[3]

UV

X} X2 = HF|[Q,, Ho(Xy, X,)]IHFTH THF|[Q,, Hy

(X3, X1 1X,0857 + THFI[Q,,, Ho(Xy, Xp)1 1%, 67 (81)

The terms in eq 81 may again be calculated with procedures
that scale at most like the fifth power in system size. Similar
schemes can be devised for the remaining terms in the
contraction ofEB! with two vectors, all of which scale as the
fifth power in system size or less.

VII. Conclusion

It is pertinent to compare the current approach to the
previously developed CC2 methddwhich also allows the
calculation of linear and nonlinear response properties and their
poles at the level of second-order Mghd?lesset perturbation
theory. Whereas the present method uses symmetric matrices
in the determination of the excitation energies in eq 55, the CC2
method uses an inherently asymmetric Jacobian matrix. The
presence of an asymmetric Jacobian leads to a number of
complications in CC2, including different left- and right-hand
side eigenvectors. These complications are avoided in the present
formalism.

The two methods differ also in the choice of operator
manifold. In the CC2 method, only single and double excitations
are included, whereas the present approach includes orbital- and
state-excitation operators as well as the corresponding deexci-
tation operators. When the second-order contributions are
discarded, the present approach therefore reduces to the standard
time-dependent Hartred-ock method, whereas the CC2 method
reduces to the coupled-cluster singles (CCS) method. The
presence of both excitations and deexcitations in the present
approach leads to a more symmetric approach, where the
eigenvalues of Eqg.. (55) occur in pairs with opposite sign and
with twice the number of parameters that occur in CC2. The
computational costs of the present approach and CC2 are
comparable-there is only a single set of eigenvectors in the
present approach, but their length is twice the length of the
eigenvectors in CC2.
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